Abstract

We report demonstration of efficient continuous-wave lasing from chromium-doped zinc selenide using anti-reflection microstructures (ARMs) in place of thin-film AR coatings or Brewster angle cavity geometries. ARM textures are more resistant to laser-induced damage than coatings, exhibit low-loss, wide angular acceptance, broad wavelength effectiveness, and are not susceptible to water absorption. Slope-efficiencies of 68% were achieved, which compares favorably to the thin-film control samples at 58% for the same cavity. ARMs hold promise for near-term power scaling and wavelength agility of transition-metal-ion doped II-VI lasers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable, Single-Frequency, and Multi-Watt Continuous-Wave Cr2+:ZnSe Lasers

I. S. Moskalev, V. V. Fedorov, and S. B. Mirov
Opt. Express 16(6) 4145-4153 (2008)

Erbium fiber laser–pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin
Opt. Lett. 27(11) 909-911 (2002)

Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov
Opt. Express 18(25) 25999-26006 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
    [Crossref]
  2. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Opt. Express18(14), 15062–15072 (2010).
    [Crossref] [PubMed]
  3. K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
    [Crossref]
  4. H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
    [Crossref]
  5. B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE8016, 80160Q(2011).
    [Crossref]
  6. D. S. Hobbs, B. D. MacLeod, E. Sabatino III, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).
  7. S. J. Wilson and M. C. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
    [Crossref]
  8. D. S. Hobbs and B. D. MacLeod, “Design, fabrication and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE5786, 349–364 (2005).
    [Crossref]
  9. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
    [Crossref]
  10. J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
    [Crossref]

2013 (1)

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

2011 (1)

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE8016, 80160Q(2011).
[Crossref]

2010 (1)

2006 (1)

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

2005 (2)

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE5786, 349–364 (2005).
[Crossref]

1988 (1)

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

1982 (1)

S. J. Wilson and M. C. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[Crossref]

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[Crossref]

Berry, P. A.

Caird, J.

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

Chase, L.

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[Crossref]

Commandré, M.

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[Crossref]

Gallais, L.

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

Grèzes-Besset, C.

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

Hobbs, D. S.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE8016, 80160Q(2011).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE5786, 349–364 (2005).
[Crossref]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[Crossref]

Krol, H.

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

Krupke, W.

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

MacLeod, B. D.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE8016, 80160Q(2011).
[Crossref]

D. S. Hobbs and B. D. MacLeod, “Design, fabrication and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE5786, 349–364 (2005).
[Crossref]

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

Mirov, M.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

Natoli, J.

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

Payne, S.

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

Pollak, T. M.

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
[Crossref]

Ramponi, A.

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

Sabatino, E.

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE8016, 80160Q(2011).
[Crossref]

Schepler, K. L.

Schunemann, P. G.

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
[Crossref]

Setzler, S. D.

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
[Crossref]

Staver, P.

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[Crossref]

Zawilski, K. T.

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Caird, S. Payne, P. Staver, A. Ramponi, L. Chase, and W. Krupke, “Quantum Electronics Properties of the NaGaLiF: Cr3+,” IEEE J. Quantum Electron.QE-24, 1077 (1988).
[Crossref]

J. Lumin. (1)

S. Mirov, V. Fedorov, I. Moskalev, M. Mirov, and D. Martyshkin, “Frontiers of mid-infrared lasers based on transition metal doped II–VI semiconductors,” J. Lumin.133, 268–275 (2013).
[Crossref]

Opt. Acta (Lond.) (1)

S. J. Wilson and M. C. Hutley, “The optical properties of 'moth eye' antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[Crossref]

Opt. Express (1)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett.20(3), 277–278 (1966).
[Crossref]

Proc. SPIE (4)

D. S. Hobbs and B. D. MacLeod, “Design, fabrication and measured performance of anti-reflecting surface textures in infrared transmitting materials,” Proc. SPIE5786, 349–364 (2005).
[Crossref]

K. T. Zawilski, S. D. Setzler, P. G. Schunemann, and T. M. Pollak, “Laser damage threshold of single crystal ZnGeP2 at 2.05 μm,” Proc. SPIE5991, 599104 (2005).
[Crossref]

H. Krol, C. Grèzes-Besset, L. Gallais, J. Natoli, and M. Commandré, “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2006).
[Crossref]

B. D. MacLeod, D. S. Hobbs, and E. Sabatino, “Moldable AR microstructures for improved laser transmission and damage resistance in CIRCM fiber optic beam delivery systems,” Proc. SPIE8016, 80160Q(2011).
[Crossref]

Other (1)

D. S. Hobbs, B. D. MacLeod, E. Sabatino III, S. B. Mirov, and D. V. Martyshkin, “Laser damage resistant anti-reflection microstructures for mid-infrared metal-ion doped ZnSe gain media,” Proc. SPIE 8530, 85300P (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Coating and surface damage (left) to the 6.5 mm x 1.8 mm face of a Cr:ZnSe sample under CW pumping and a close-up (right) of the largest (~400 µm diameter) damage spot.
Fig. 2
Fig. 2 Process flow for fabricating AR microstructures in Cr:ZnSe laser crystals.
Fig. 3
Fig. 3 Overhead (left) and cross sectional (right) views of an ARM-treated Cr:ZnSe laser crystal.
Fig. 4
Fig. 4 Measured transmission of ARM treated sample compared to a traditional thin-film AR coated sample (TFARC) and untreated (UT) sample. The AR treatment design band is continuous from the pump laser at 1.9µm out to the longest tuning wavelength at 3.2µm. The three discs displayed in the lower right-hand corner were 15 mm diameter samples.
Fig. 5
Fig. 5 Experimental setup to directly compare ARMs and TFARC crystals.
Fig. 6
Fig. 6 a) Heat sink used to direct water impingement cool the ARM textured Cr:ZnSe disk . b) Cross-section of the direct water impingement heat sink.
Fig. 7
Fig. 7 Measured slope efficiencies of the ARM textured (“Motheye”) and TFARC samples in identical resonators.
Fig. 8
Fig. 8 Findlay-Clay analysis for the ARMs-textured and TFARC Cr:ZnSe samples.
Fig. 9
Fig. 9 Discrete tuning spectra of the ARM treated sample. The free-running wavelength was centered at 2389 nm.

Tables (1)

Tables Icon

Table 1 Comparison of slope efficiencies for thin-film AR coated samples and ARM coated samples.

Metrics