Abstract

In this paper, mid-infrared emission properties and energy transfer mechanism were investigated in Er3+ doped germanate glass pumped by 980 nm diode laser. Spontaneous radiative transition probability and emission cross section at 2.7 μm were calculated to be as high as 36.45 s−1 and 1.61 × 10−20 cm2, respectively. Corresponding upconversion emission spectra and radiative lifetimes of 4I13/2 level were determined to elucidate the mid-infrared luminescent characteristics. Moreover, population behaviors of Er3+: 4I11/2 and 4I13/2 level were analyzed numerically via Inokuti-Hirayama model, rate equations and Dexter’s theory. In addition, DSC curves of developed samples were measured and thermal stabilities were studied to evaluate the ability of resisting thermal damage and crystallization. The results indicate that erbium activated germanate glass is a promising candidate for mid-infrared applications. This work may provide beneficial guide for investigation of population behaviors of Er3+ ions at 2.7 μm emissions.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Positive influence of Ce3+ on effective transfer Yb3+:2F5/2 → Ho3+:5I6 in silica-germanate glass for mid-infrared applications

Tao Wang, Feifei Huang, Wenqian Cao, Yanyan Guo, Ruoshan Lei, Renguang Ye, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 7(3) 1084-1095 (2017)

Highly efficient mid-infrared 2 μm emission in Ho3+/Yb3+-codoped germanate glass

Muzhi Cai, Beier Zhou, Fengchao Wang, Ying Tian, Jiajia Zhou, Shiqing Xu, and Junjie Zhang
Opt. Mater. Express 5(6) 1431-1439 (2015)

Thermal and luminescent properties of 2  μm emission in thulium-sensitized holmium-doped silicate-germanate glass

Rong Chen, Ying Tian, Bingpeng Li, Xufeng Jing, Junjie Zhang, Shiqing Xu, Hellmut Eckert, and Xianghua Zhang
Photon. Res. 4(6) 214-221 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
    [Crossref] [PubMed]
  2. J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571 (2013).
    [Crossref]
  3. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
    [Crossref] [PubMed]
  4. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photon. Res. 1(1), 52–57 (2013).
    [Crossref]
  5. B. Wu, T. Chen, J. Wang, P. Jiang, D. Yang, and Y. Shen, “Fiber laser-pumped, chirped, PPMgLN-based high efficient broadband mid-IR generation,” Chin. Opt. Lett. 11(8), 081901 (2013).
    [Crossref]
  6. S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-µm fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
    [Crossref] [PubMed]
  7. S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm,” Opt. Lett. 29(4), 334–336 (2004).
    [Crossref] [PubMed]
  8. Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
    [Crossref]
  9. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
    [Crossref] [PubMed]
  10. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
    [Crossref] [PubMed]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
    [Crossref] [PubMed]
  12. J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
    [Crossref] [PubMed]
  13. F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
    [Crossref]
  14. Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
    [Crossref] [PubMed]
  15. Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
    [Crossref]
  16. G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7-μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
    [Crossref]
  17. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
    [Crossref]
  18. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  19. A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
    [Crossref]
  20. S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
    [Crossref]
  21. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
    [Crossref] [PubMed]
  22. S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14(24), 11687–11693 (2006).
    [Crossref] [PubMed]
  23. G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
    [Crossref]
  24. J. M. Jewell, P. L. Higby, and I. D. Aggarwal, “Properties of BaO–R2O3–Ga2O3–GeO2 (R= Y, Al, La and Gd) Glasses,” J. Am. Ceram. Soc. 77(3), 697–700 (1994).
    [Crossref]
  25. Z. H. Xiao, A. X. Lu, and C. G. Zuo, “Structure and property of multicomponent germanate glass containing Y2O3,” Adv. Appl. Ceramics 108(6), 325–331 (2009).
    [Crossref]
  26. H.-P. Xia and X.-J. Wang, “Near infrared broadband emission from Bi-doped Al2O3–GeO2–X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89(5), 051917 (2006).
    [Crossref]
  27. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
    [Crossref]
  28. T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
    [Crossref]
  29. F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
    [Crossref] [PubMed]
  30. H. Lin, E. Pun, S. Man, and X. Liu, “Optical transitions and frequency upconversion of Er3+ ions in Na2O∙ Ca3Al2Ge3O12 glasses,” J. Opt. Soc. Am. B 18(5), 602–609 (2001).
    [Crossref]
  31. B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
    [Crossref]
  32. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511 (1962).
    [Crossref]
  33. X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
    [Crossref]
  34. U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
    [Crossref]
  35. Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
    [Crossref]
  36. M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
    [Crossref]
  37. J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass,” Appl. Opt. 34(21), 4284–4289 (1995).
    [Crossref] [PubMed]
  38. S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
    [Crossref]
  39. L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
    [Crossref]
  40. S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
    [Crossref]
  41. D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
    [Crossref]
  42. Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
    [Crossref]
  43. F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
    [Crossref]
  44. Y. Tian, X. Jing, and S. Xu, “Spectroscopic analysis and efficient diode-pumped 2.0μm emission in Ho3+/Tm3+ codoped fluoride glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 33–38 (2013).
    [Crossref] [PubMed]
  45. S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
    [Crossref]
  46. G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
    [Crossref] [PubMed]
  47. B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
    [Crossref]
  48. B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
    [Crossref] [PubMed]
  49. H. Yamauchi, G. Senthil Murugan, and Y. Ohishi, “Optical properties of Er3+ and Tm3+ ions in a tellurite glass,” J. Appl. Phys. 97(4), 043505 (2005).
    [Crossref]
  50. F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).
  51. X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
    [Crossref]
  52. L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
    [Crossref]
  53. A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
    [Crossref]
  54. M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
    [Crossref]

2014 (8)

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
[Crossref] [PubMed]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

2013 (7)

Y. Tian, X. Jing, and S. Xu, “Spectroscopic analysis and efficient diode-pumped 2.0μm emission in Ho3+/Tm3+ codoped fluoride glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 33–38 (2013).
[Crossref] [PubMed]

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

J. Hu, J. Meyer, K. Richardson, and L. Shah, “Feature issue introduction: mid-IR photonic materials,” Opt. Mater. Express 3(9), 1571 (2013).
[Crossref]

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photon. Res. 1(1), 52–57 (2013).
[Crossref]

B. Wu, T. Chen, J. Wang, P. Jiang, D. Yang, and Y. Shen, “Fiber laser-pumped, chirped, PPMgLN-based high efficient broadband mid-IR generation,” Chin. Opt. Lett. 11(8), 081901 (2013).
[Crossref]

2012 (5)

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7-μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
[Crossref]

2011 (8)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

2010 (1)

2009 (3)

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref] [PubMed]

Z. H. Xiao, A. X. Lu, and C. G. Zuo, “Structure and property of multicomponent germanate glass containing Y2O3,” Adv. Appl. Ceramics 108(6), 325–331 (2009).
[Crossref]

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

2007 (1)

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

2006 (5)

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

H.-P. Xia and X.-J. Wang, “Near infrared broadband emission from Bi-doped Al2O3–GeO2–X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89(5), 051917 (2006).
[Crossref]

X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14(24), 11687–11693 (2006).
[Crossref] [PubMed]

2005 (1)

H. Yamauchi, G. Senthil Murugan, and Y. Ohishi, “Optical properties of Er3+ and Tm3+ ions in a tellurite glass,” J. Appl. Phys. 97(4), 043505 (2005).
[Crossref]

2004 (1)

2003 (1)

G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
[Crossref]

2002 (1)

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

2001 (1)

2000 (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

1999 (1)

1997 (2)

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
[Crossref]

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

1995 (1)

1994 (1)

J. M. Jewell, P. L. Higby, and I. D. Aggarwal, “Properties of BaO–R2O3–Ga2O3–GeO2 (R= Y, Al, La and Gd) Glasses,” J. Am. Ceram. Soc. 77(3), 697–700 (1994).
[Crossref]

1993 (1)

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

1992 (1)

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

1964 (1)

D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

1962 (2)

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511 (1962).
[Crossref]

Aggarwal, I. D.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14(24), 11687–11693 (2006).
[Crossref] [PubMed]

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
[Crossref]

J. M. Jewell, P. L. Higby, and I. D. Aggarwal, “Properties of BaO–R2O3–Ga2O3–GeO2 (R= Y, Al, La and Gd) Glasses,” J. Am. Ceram. Soc. 77(3), 697–700 (1994).
[Crossref]

Ajroud, M.

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Androz, G.

Bayya, S. S.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14(24), 11687–11693 (2006).
[Crossref] [PubMed]

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
[Crossref]

Ben Ouada, H.

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Bernier, M.

Brenier, A.

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Cáceres, J. M.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Cao, G.

G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
[Crossref]

Caron, N.

Chai, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Champagnon, B.

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Chase, L.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Chen, D.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

Chen, F.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Chen, T.

Chin, G. D.

Courrol, L. C.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

Dickinson, M. R.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Dong, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

El-Taher, A. E.

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Fan, H.

Fan, X.

X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Fang, Y.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Faucher, D.

Felipe Henriques Librantz, A.

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

Ferreira, J. M. F.

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

Gan, F.

G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
[Crossref]

Goel, A.

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

Gomes, L.

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Guo, Y.

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

Hanada, T.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

Haouari, M.

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Harbison, B. B.

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
[Crossref]

Hashida, M.

Henderson-Sapir, O.

Heo, J.

Higby, P. L.

J. M. Jewell, P. L. Higby, and I. D. Aggarwal, “Properties of BaO–R2O3–Ga2O3–GeO2 (R= Y, Al, La and Gd) Glasses,” J. Am. Ceram. Soc. 77(3), 697–700 (1994).
[Crossref]

Hirokane, M.

Hu, H.

G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
[Crossref]

Hu, J.

Hu, L.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7-μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
[Crossref]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Huang, F.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

Huang, L.

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Hudson, D. D.

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-µm fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[Crossref] [PubMed]

Jagosich, F. H.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

Jang, J. N.

Jewell, J. M.

J. M. Jewell, P. L. Higby, and I. D. Aggarwal, “Properties of BaO–R2O3–Ga2O3–GeO2 (R= Y, Al, La and Gd) Glasses,” J. Am. Ceram. Soc. 77(3), 697–700 (1994).
[Crossref]

Jha, A.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Jiang, P.

Jiang, X.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Jing, X.

Y. Tian, X. Jing, and S. Xu, “Spectroscopic analysis and efficient diode-pumped 2.0μm emission in Ho3+/Tm3+ codoped fluoride glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 33–38 (2013).
[Crossref] [PubMed]

Jose, G.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Joshi, P.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Judd, B.

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

King, T. A.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-µm fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[Crossref] [PubMed]

Krupke, W. F.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Kway, W. L.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Lalla, E. A.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Lavín, V.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

León-Luís, S. F.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Li, J.

Li, M.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Li, W.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

Li, X.

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Liao, M.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Lin, F.

G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
[Crossref]

Lin, H.

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

H. Lin, E. Pun, S. Man, and X. Liu, “Optical transitions and frequency upconversion of Er3+ ions in Na2O∙ Ca3Al2Ge3O12 glasses,” J. Opt. Soc. Am. B 18(5), 602–609 (2001).
[Crossref]

Liu, X.

F. Huang, X. Liu, W. Li, L. Hu, and D. Chen, “Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7-µm emission,” Chin. Opt. Lett. 12(5), 051601 (2014).
[Crossref]

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

H. Lin, E. Pun, S. Man, and X. Liu, “Optical transitions and frequency upconversion of Er3+ ions in Na2O∙ Ca3Al2Ge3O12 glasses,” J. Opt. Soc. Am. B 18(5), 602–609 (2001).
[Crossref]

Lousteau, J.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Lu, A. X.

Z. H. Xiao, A. X. Lu, and C. G. Zuo, “Structure and property of multicomponent germanate glass containing Y2O3,” Adv. Appl. Ceramics 108(6), 325–331 (2009).
[Crossref]

Ma, Y.

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

Mâaref, H.

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Man, S.

McCumber, D.

D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Melo, F. C. L.

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

Meyer, J.

Monro, T.

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

Munch, J.

Murakami, M.

Oermann, M.

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511 (1962).
[Crossref]

Ohishi, Y.

H. Yamauchi, G. Senthil Murugan, and Y. Ohishi, “Optical properties of Er3+ and Tm3+ ions in a tellurite glass,” J. Appl. Phys. 97(4), 043505 (2005).
[Crossref]

Ohyagi, T.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

Ottaway, D.

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

Ottaway, D. J.

Payne, S. A.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Peng, S.

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Pierce, M. C.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Pollnau, M.

Pun, E.

Pun, E. Y.-B.

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Qi, Y.

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Qiao, X.

X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Qiu, J.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Ranieri, I.

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Ranieri, I. M.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

Ravi Kanth Kumar, V. V.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Ribeiro, M. J.

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

Richards, B.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Richardson, K.

Rivera-López, F.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Rodríguez-Mendoza, U. R.

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Sakabe, S.

Sanghera, J. S.

S. S. Bayya, G. D. Chin, J. S. Sanghera, and I. D. Aggarwal, “Germanate glass as a window for high energy laser systems,” Opt. Express 14(24), 11687–11693 (2006).
[Crossref] [PubMed]

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
[Crossref]

Senthil Murugan, G.

H. Yamauchi, G. Senthil Murugan, and Y. Ohishi, “Optical properties of Er3+ and Tm3+ ions in a tellurite glass,” J. Appl. Phys. 97(4), 043505 (2005).
[Crossref]

Shaaban, E. R.

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

Shah, L.

Shanmugavelu, B.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Shen, Y.

Shimizu, S.

Shin, Y. B.

Sloan, P.

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Smith, L. K.

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

Soga, N.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

Sun, H.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Tanabe, S.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

Tang, Y.

Tarelho, L.

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Tarelho, L. V. G.

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

Teddy-Fernandez, T.

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Tian, Y.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Y. Tian, X. Jing, and S. Xu, “Spectroscopic analysis and efficient diode-pumped 2.0μm emission in Ho3+/Tm3+ codoped fluoride glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 33–38 (2013).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7-μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
[Crossref]

Todoroki, S.

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

Tokita, S.

Tsang, Y. H.

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Vallée, R.

Venkatramu, V.

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Wang, J.

B. Wu, T. Chen, J. Wang, P. Jiang, D. Yang, and Y. Shen, “Fiber laser-pumped, chirped, PPMgLN-based high efficient broadband mid-IR generation,” Chin. Opt. Lett. 11(8), 081901 (2013).
[Crossref]

X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Wang, M.

X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

Wang, X.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

Wang, X.-J.

H.-P. Xia and X.-J. Wang, “Near infrared broadband emission from Bi-doped Al2O3–GeO2–X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89(5), 051917 (2006).
[Crossref]

Wei, T.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Wen, L.

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Wu, B.

Xia, H.-P.

H.-P. Xia and X.-J. Wang, “Near infrared broadband emission from Bi-doped Al2O3–GeO2–X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89(5), 051917 (2006).
[Crossref]

Xiao, Z. H.

Z. H. Xiao, A. X. Lu, and C. G. Zuo, “Structure and property of multicomponent germanate glass containing Y2O3,” Adv. Appl. Ceramics 108(6), 325–331 (2009).
[Crossref]

Xu, J.

Xu, R.

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

Xu, S.

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

Y. Tian, X. Jing, and S. Xu, “Spectroscopic analysis and efficient diode-pumped 2.0μm emission in Ho3+/Tm3+ codoped fluoride glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 33–38 (2013).
[Crossref] [PubMed]

Xu, X.

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Yamauchi, H.

H. Yamauchi, G. Senthil Murugan, and Y. Ohishi, “Optical properties of Er3+ and Tm3+ ions in a tellurite glass,” J. Appl. Phys. 97(4), 043505 (2005).
[Crossref]

Yang, D.

B. Wu, T. Chen, J. Wang, P. Jiang, D. Yang, and Y. Shen, “Fiber laser-pumped, chirped, PPMgLN-based high efficient broadband mid-IR generation,” Chin. Opt. Lett. 11(8), 081901 (2013).
[Crossref]

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Yang, J.

Yang, Z.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Yin, D.

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Zhang, J.

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

G. Zhao, Y. Tian, H. Fan, J. Zhang, and L. Hu, “Efficient 2.7-μm emission in Er3+-doped bismuth germanate glass pumped by 980-nm laser diode,” Chin. Opt. Lett. 10(9), 091601 (2012).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
[Crossref]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

Zhang, L.

Zhang, Q.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Zhao, G.

Zheng, S.

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Zhou, B.

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

Zhou, Y.

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Zuo, C. G.

Z. H. Xiao, A. X. Lu, and C. G. Zuo, “Structure and property of multicomponent germanate glass containing Y2O3,” Adv. Appl. Ceramics 108(6), 325–331 (2009).
[Crossref]

Adv. Appl. Ceramics (1)

Z. H. Xiao, A. X. Lu, and C. G. Zuo, “Structure and property of multicomponent germanate glass containing Y2O3,” Adv. Appl. Ceramics 108(6), 325–331 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H.-P. Xia and X.-J. Wang, “Near infrared broadband emission from Bi-doped Al2O3–GeO2–X (X=Na2O, BaO, Y2O3) glasses,” Appl. Phys. Lett. 89(5), 051917 (2006).
[Crossref]

Chin. Opt. Lett. (3)

Fibers (1)

Y. Ma, F. Huang, L. Hu, and J. Zhang, “Er3+/Ho3+-Codoped Fluorotellurite Glasses for 2.7 µm Fiber Laser Materials,” Fibers 1(2), 11–20 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619–2630 (1992).
[Crossref]

J. Am. Ceram. Soc. (1)

J. M. Jewell, P. L. Higby, and I. D. Aggarwal, “Properties of BaO–R2O3–Ga2O3–GeO2 (R= Y, Al, La and Gd) Glasses,” J. Am. Ceram. Soc. 77(3), 697–700 (1994).
[Crossref]

J. Appl. Phys. (7)

X. Qiao, X. Fan, J. Wang, and M. Wang, “Judd-Ofelt analysis and luminescence behavior of Er3+ ions in glass ceramics containing SrF2 nanocrystals,” J. Appl. Phys. 99(7), 074302 (2006).
[Crossref]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7-μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys. 111(3), 033524 (2012).
[Crossref]

S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, and N. Soga, “Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses,” J. Appl. Phys. 73(12), 8451–8454 (1993).
[Crossref]

L. Gomes, M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, T. Monro, A. Felipe Henriques Librantz, and S. D. Jackson, “Energy level decay and excited state absorption processes in erbium-doped tellurite glass,” J. Appl. Phys. 110(8), 083111 (2011).
[Crossref]

H. Yamauchi, G. Senthil Murugan, and Y. Ohishi, “Optical properties of Er3+ and Tm3+ ions in a tellurite glass,” J. Appl. Phys. 97(4), 043505 (2005).
[Crossref]

F. H. Jagosich, L. Gomes, L. V. G. Tarelho, L. C. Courrol, and I. M. Ranieri, “Deactivation effects of the lowest excited states of Er3+ and Ho3+ introduced by Nd3+ ions in LiYF4 crystals,” J. Appl. Phys. 91(2), 624–632 (2002).

B. Zhou, E. Y.-B. Pun, H. Lin, D. Yang, and L. Huang, “Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses,” J. Appl. Phys. 106(10), 103105 (2009).
[Crossref]

J. Chem. Phys. (1)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37(3), 511 (1962).
[Crossref]

J. Lumin. (3)

U. R. Rodríguez-Mendoza, E. A. Lalla, J. M. Cáceres, F. Rivera-López, S. F. León-Luís, and V. Lavín, “Optical characterization, 1.5 μm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses,” J. Lumin. 131(6), 1239–1248 (2011).
[Crossref]

Y. Ma, Y. Guo, F. Huang, L. Hu, and J. Zhang, “Spectroscopic properties in Er3+ doped zinc-and tungsten-modified tellurite glasses for 2.7 μm laser materials,” J. Lumin. 147, 372–377 (2014).
[Crossref]

X. Liu, M. Li, X. Wang, F. Huang, Y. Ma, J. Zhang, L. Hu, and D. Chen, “~2 µm Luminescence properties and nonradiative processes of Tm3+ in silicate glass,” J. Lumin. 150, 40–45 (2014).
[Crossref]

J. Non-Cryst. Solids (3)

A. Goel, E. R. Shaaban, F. C. L. Melo, M. J. Ribeiro, and J. M. F. Ferreira, “Non-isothermal crystallization kinetic studies on MgO–Al2O3–SiO2–TiO2 glass,” J. Non-Cryst. Solids 353(24–25), 2383–2391 (2007).
[Crossref]

S. S. Bayya, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “BaO-Ga2O3-GeO2 glasses with enhanced properties,” J. Non-Cryst. Solids 212(2-3), 198–207 (1997).
[Crossref]

G. Cao, F. Lin, H. Hu, and F. Gan, “A new fluorogermanate glass,” J. Non-Cryst. Solids 326–327, 170–176 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (3)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transf. 113(1), 87–95 (2012).
[Crossref]

T. Wei, F. Chen, Y. Tian, and S. Xu, “Efficient 2.7 μm emission and energy transfer mechanism in Er3+ doped Y2O3 and Nb2O5 modified germanate glasses,” J. Quant. Spectrosc. Radiat. Transf. 133, 663–669 (2014).
[Crossref]

S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, and S. Peng, “The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+ codoped TeO2–WO3–Na2O–Nb2O5 glasses,” J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013).
[Crossref]

Laser Phys. Lett. (1)

Y. H. Tsang and A. E. El-Taher, “Efficient lasing at near 3 µm by a Dy-doped ZBLAN fiber laser pumped at ~1.1 µm by an Yb fiber laser,” Laser Phys. Lett. 8(11), 818–822 (2011).
[Crossref]

Lasers Surg. Med. (1)

M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with a continuous wave 3-µm fibre laser: Preliminary studies with soft tissue,” Lasers Surg. Med. 26(5), 491–495 (2000).
[Crossref] [PubMed]

Mater. Chem. Phys. (1)

M. Liao, H. Sun, L. Wen, Y. Fang, and L. Hu, “Effect of alkali and alkaline earth fluoride introduction on thermal stability and structure of fluorophosphate glasses,” Mater. Chem. Phys. 98(1), 154–158 (2006).
[Crossref]

Mater. Sci. Eng. C (1)

M. Ajroud, M. Haouari, H. Ben Ouada, H. Mâaref, A. Brenier, and B. Champagnon, “Energy transfer processes in (Er3+-Yb3+)-codoped germanate glasses for mid-infrared and up-conversion applications,” Mater. Sci. Eng. C 26(2–3), 523–529 (2006).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (9)

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett. 36(7), 1173–1175 (2011).
[Crossref] [PubMed]

Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, “Observation of 2.7 μm emission from diode-pumped Er3+/Pr3+-codoped fluorophosphate glass,” Opt. Lett. 36(2), 109–111 (2011).
[Crossref] [PubMed]

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-µm fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[Crossref] [PubMed]

S. D. Jackson, “Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 µm,” Opt. Lett. 29(4), 334–336 (2004).
[Crossref] [PubMed]

O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
[Crossref] [PubMed]

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er:ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett. 35(23), 3943–3945 (2010).
[Crossref] [PubMed]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett. 36(7), 1104–1106 (2011).
[Crossref] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser,” Opt. Lett. 34(20), 3062–3064 (2009).
[Crossref] [PubMed]

J. Li, D. D. Hudson, and S. D. Jackson, “High-power diode-pumped fiber laser operating at 3 μm,” Opt. Lett. 36(18), 3642–3644 (2011).
[Crossref] [PubMed]

Opt. Mater. (2)

F. Huang, X. Li, X. Liu, J. Zhang, L. Hu, and D. Chen, “Sensitizing effect of Ho3+ on the Er3+: 2.7 μm-emission in fluoride glass,” Opt. Mater. 36(5), 921–925 (2014).
[Crossref]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. 34(1), 308–312 (2011).
[Crossref]

Opt. Mater. Express (1)

Photon. Res. (1)

Phys. Rev. (2)

B. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127(3), 750–761 (1962).
[Crossref]

D. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
[Crossref]

Phys. Rev. B (1)

L. Tarelho, L. Gomes, and I. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B 56(22), 14344–14351 (1997).
[Crossref]

Prog. Mater. Sci. (1)

A. Jha, B. Richards, G. Jose, T. Teddy-Fernandez, P. Joshi, X. Jiang, and J. Lousteau, “Rare-earth ion doped TeO2 and GeO2 glasses as laser materials,” Prog. Mater. Sci. 57(8), 1426–1491 (2012).
[Crossref]

Sci Rep (2)

F. Huang, Y. Ma, W. Li, X. Liu, L. Hu, and D. Chen, “2.7 μm emission of high thermally and chemically durable glasses based on AlF3.,” Sci Rep 4, 3607 (2014).
[Crossref] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “Phase transformation and intense 2.7 μm emission from Er3+ doped YF3/YOF submicron-crystals,” Sci Rep 3, 1598 (2013).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

Y. Tian, X. Jing, and S. Xu, “Spectroscopic analysis and efficient diode-pumped 2.0μm emission in Ho3+/Tm3+ codoped fluoride glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 115, 33–38 (2013).
[Crossref] [PubMed]

B. Shanmugavelu, V. Venkatramu, and V. V. Ravi Kanth Kumar, “Optical properties of Nd3+ doped bismuth zinc borate glasses,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 122, 422–427 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Absorption spectra of Er3+ doped germanate glasses. The inset is the enlarged 980 nm absorption spectra.
Fig. 2
Fig. 2 Mid-infrared fluorescence spectra of Er3+ doped germanate glass.
Fig. 3
Fig. 3 Absorption and emission cross sections at 2.7 μm in Er3+ doped germanate glass.
Fig. 4
Fig. 4 Energy level diagram and energy transfer sketch of Er3+ pumped at 980 nm.
Fig. 5
Fig. 5 Visible upconversion emission spectra of Er3+ doped germanate glass. The inset is the power dependence of upconversion emission intensity in Ln-Ln scale.
Fig. 6
Fig. 6 Decay data (dash line) of 4I13/2 level monitored at 1530 nm in Er3+ doped germanate glass together with fitting curves (solid line) via (a) I-H model and (b) rate equation model.
Fig. 7
Fig. 7 Absorption and emission cross sections at 978 nm and 1530 nm in Er3+ doped germanate glass.
Fig. 8
Fig. 8 DSC curves of Er3+ doped germanate glass.

Tables (6)

Tables Icon

Table 1 Measured and calculated oscillator strengths in various Er3+ doped glasses.

Tables Icon

Table 2 The J-O intensity parameters in Er3+ doped various glasses.

Tables Icon

Table 3 The energy gap (ΔE), predicted spontaneous transition probability (Arad), branching ratios (β) and calculated lifetime (τrad) in studied glasses for various selected levels of Er3+.

Tables Icon

Table 4 Lifetime (τ0), energy transfer upconversion coefficient (CETU), pumping rate (R0), energy transfer rate (CDA) and energy transfer parameter (Q) of Er3+: 4I13/2 level in prepared samples.

Tables Icon

Table 5 The energy transfer microscopic parameters (CD-A) of Er3+: 4I11/24I11/2 and 4I13/24I13/2 processes in germanate glass and the number of phonons assisted energy transfer as well as percentage of phonons.

Tables Icon

Table 6 The temperature of glass transition (Tg), onset crystallization temperature (Tx), top crystallization temperature (Tp), thermal stability ΔT and the parameter S = ΔT(Tp-Tx)/Tg in various glasses.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Δ λ e f f = I ( λ ) d λ I max
σ em (λ)= λ 4 A rad 8πc n 2 × λI(λ) λI(λ)dλ
σ abs (λ)= σ em (λ)( Z u / Z l )exp[ (εhν) / kT ]
I(t) I(0) =exp( t τ 0 Q ( t τ 0 ) 3/s )
Q= 4π 3 Γ( 1 3 s ) N Er R c 3
C DA = 9 Q 2 8π N Er 2 Γ( 13 /s ) τ 0
d n 1 (t) dt = R 0 n 1 (t)+ n 2 (t) τ 0 + C ETU n 2 (t) 2
d n 2 (t) dt = R 0 n 1 (t) n 2 (t) τ 0 2 C ETU n 2 (t) 2
n 1 (t)+ n 2 (t)= n Er
d n 2 (t) dt = n 2 (t) τ 0 2 C ETU n 2 (t) 2
n 2 (t) n 2 (0) = { [ 1+2 C ETU n 2 (0) τ 0 ]exp( t τ 0 )2 C ETU n 2 (0) τ 0 } 1
n 2 (0)= ( R 0 τ 0 +1 ) 4 C ETU τ 0 [ ( 1+ 8 C ETU n E r R 0 τ 0 2 ( R 0 τ 0 +1 ) 2 ) 1/2 1 ]
W DA (R)= C DA R 6
C DA = R C 6 τ D
C DA = 6c g low D ( 2π ) 4 n 2 g up D m=0 e (2 n +1) S 0 S 0 m m! ( n +1 ) m σ ems D ( λ m + ) σ abs A (λ)dλ
S= ( T p T x )ΔT / T g

Metrics