Abstract

A critical challenge in the fabrication of chalcogenide-glass infrared optical fibers is the need for first producing large volumes of high-purity glass – a formidable task, particularly in the case of multicomponent glasses. We describe here a procedure based on multimaterial coextrusion of a hybrid glass-polymer preform from which extended lengths of robust infrared fibers are readily drawn. Only ~2 g of glass is required to produce 46 m of step-index fiber with core diameters in the range 10 – 18 μm. This process enables rapid prototyping of a variety of glasses for applications in the delivery of quantum cascade laser light, spectroscopy, sensing, and astronomy.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Infrared fibers

Guangming Tao, Heike Ebendorff-Heidepriem, Alexander M. Stolyarov, Sylvain Danto, John V. Badding, Yoel Fink, John Ballato, and Ayman F. Abouraddy
Adv. Opt. Photon. 7(2) 379-458 (2015)

Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission

Guangming Tao, Soroush Shabahang, He Ren, Farnood Khalilzadeh-Rezaie, Robert E. Peale, Zhiyong Yang, Xunsi Wang, and Ayman F. Abouraddy
Opt. Lett. 39(13) 4009-4012 (2014)

Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers

Guangming Tao, Soroush Shabahang, Esmaeil-Hooman Banaei, Joshua J. Kaufman, and Ayman F. Abouraddy
Opt. Lett. 37(13) 2751-2753 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003).
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
    [Crossref]
  3. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison, C. McMillen, J. Reppert, A. M. Rao, M. Daw, S. R. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D. R. Powers, “Silicon optical Fiber,” Opt. Express 16(23), 18675–18683 (2008).
    [Crossref] [PubMed]
  4. G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
    [Crossref] [PubMed]
  5. H. Ebendorff-Heidepriem, K. Kuan, M. R. Oermann, K. Knight, and T. M. Monro, “Extruded tellurite glass and fibers with low OH content for mid-infrared applications,” Opt. Mater. Express 2(4), 432–442 (2012).
    [Crossref]
  6. G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
    [Crossref] [PubMed]
  7. G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” SPIE 9098, 90980V (2014).
  8. G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
    [Crossref] [PubMed]
  9. B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
    [Crossref] [PubMed]
  10. S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
    [Crossref]
  11. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
    [Crossref] [PubMed]
  12. F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
    [Crossref]
  13. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 μm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006).
    [Crossref] [PubMed]
  14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008).
    [Crossref] [PubMed]
  15. L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
    [Crossref]
  16. S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
    [Crossref] [PubMed]
  17. S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
    [Crossref]
  18. J. L. Adam and X. H. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2013).
  19. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
    [Crossref] [PubMed]
  20. M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE 8307, 83070N (2011).
    [Crossref]
  21. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
    [Crossref]
  22. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
    [Crossref]
  23. W. Egel-Hess and E. Roeder, “Extrusion of glass melts-influence of wall friction effects on the die swell phenomenon,” Glastech. Ber. 62, 279–284 (1989).
  24. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [Crossref] [PubMed]
  25. A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
    [Crossref]
  26. A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998).
    [Crossref]
  27. D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256–257, 232–236 (1999).
    [Crossref]
  28. S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
    [Crossref]
  29. K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
    [Crossref]
  30. D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
    [Crossref]
  31. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
    [Crossref]
  32. S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nano-tapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
    [Crossref]
  33. http://www.amorphousmaterials.com/
  34. G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
    [Crossref]
  35. J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
    [Crossref] [PubMed]
  36. C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992).
    [Crossref]
  37. A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University, 2013).

2014 (4)

2013 (1)

2012 (4)

2011 (3)

M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE 8307, 83070N (2011).
[Crossref]

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

2010 (2)

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
[Crossref]

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

2009 (2)

L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17(3), 1947–1962 (2009).
[Crossref] [PubMed]

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

2008 (3)

2007 (1)

2006 (1)

2005 (1)

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[Crossref]

2004 (1)

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

2003 (1)

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
[Crossref] [PubMed]

2002 (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

1999 (1)

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256–257, 232–236 (1999).
[Crossref]

1998 (1)

A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998).
[Crossref]

1994 (1)

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

1992 (1)

C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992).
[Crossref]

1989 (2)

W. Egel-Hess and E. Roeder, “Extrusion of glass melts-influence of wall friction effects on the die swell phenomenon,” Glastech. Ber. 62, 279–284 (1989).

J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
[Crossref] [PubMed]

1972 (1)

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
[Crossref]

1971 (1)

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
[Crossref]

Abouraddy, A. F.

G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” SPIE 9098, 90980V (2014).

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
[Crossref]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nano-tapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

Aggarwal, I. D.

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Argon, A. S.

C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992).
[Crossref]

Ballato, J.

Banaei, E.-H.

Belwalkar, A.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
[Crossref]

Boyce, C.

C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992).
[Crossref]

Capasso, F.

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Chong, H.

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
[Crossref]

Cordeiro, C. M. B.

Cronin-Golomb, M.

Daw, M.

Delfyett, P. J.

Deng, D. S.

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

Domachuk, P.

Ebendorff-Heidepriem, H.

Egel-Hess, W.

W. Egel-Hess and E. Roeder, “Extrusion of glass melts-influence of wall friction effects on the die swell phenomenon,” Glastech. Ber. 62, 279–284 (1989).

Ellison, M.

Ensley, T. R.

Feng, L.

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Feng, X.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[Crossref]

Finazzi, V.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[Crossref]

Fink, Y.

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

Foy, P.

Freeman, M. J.

Furniss, D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256–257, 232–236 (1999).
[Crossref]

A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998).
[Crossref]

Gattass, R. R.

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

George, A. K.

Gibson, D. J.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

Guo, H.

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Harrington, J. A.

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

Hawkins, T.

Hu, H.

Islam, M. N.

Itoh, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

Iwakura, M.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

Kaufman, J. J.

Khalilzadeh-Rezaie, F.

Knight, J. C.

Knight, K.

Kokuoz, B.

Kuan, K.

Kulkarni, O. P.

Kumar, M.

Labadie, L.

Li, D.

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
[Crossref]

Liu, M.

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Marquez, M. P.

Masuda, I.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

Mazé, G.

McMillen, C.

Miller, C. A.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Misiolek, W. Z.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
[Crossref]

Miura, K.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

Mizaikoff, B.

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
[Crossref] [PubMed]

Monro, T. M.

Montagut, E. L.

C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992).
[Crossref]

Motesharei, A.

A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998).
[Crossref]

Nguyen, D.

Nishii, J.

Oermann, M. R.

Omenetto, F. G.

Peale, R. E.

Peng, B.

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Petropoulos, P.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[Crossref]

Piracha, M. U.

Poulain, M.

Powers, D. R.

Rao, A. M.

Ren, H.

Reppert, J.

Rice, R. R.

Richardson, D. J.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[Crossref]

Roeder, E.

W. Egel-Hess and E. Roeder, “Extrusion of glass melts-influence of wall friction effects on the die swell phenomenon,” Glastech. Ber. 62, 279–284 (1989).

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
[Crossref]

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
[Crossref]

Saad, M.

M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE 8307, 83070N (2011).
[Crossref]

Sanghera, J. S.

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Savage, S. D.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

Seddon, A. B.

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256–257, 232–236 (1999).
[Crossref]

A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998).
[Crossref]

Shabahang, S.

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
[Crossref]

S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nano-tapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
[Crossref]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

Sharma, S. R.

Shaw, L. B.

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Shori, R.

Stafsudd, O.

Stolen, R.

Stolyarov, A. M.

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

Sun, C.

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
[Crossref]

Tao, G.

G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” SPIE 9098, 90980V (2014).

S. Shabahang, G. Tao, M. P. Marquez, H. Hu, T. R. Ensley, P. J. Delfyett, and A. F. Abouraddy, “Nonlinear characterization of robust multimaterial chalcogenide nanotapers for infrared supercontinuum generation,” J. Opt. Soc. Am. B 31(3), 450–457 (2014).
[Crossref]

G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, and A. F. Abouraddy, “Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission,” Opt. Lett. 39(13), 4009–4012 (2014).
[Crossref] [PubMed]

S. Shabahang, G. Tao, J. J. Kaufman, and A. F. Abouraddy, “Dispersion characterization of chalcogenide bulk glass, composite fibers, and robust nano-tapers,” J. Opt. Soc. Am. B 30(9), 2498–2506 (2013).
[Crossref]

S. Shabahang, M. P. Marquez, G. Tao, M. U. Piracha, D. Nguyen, P. J. Delfyett, and A. F. Abouraddy, “Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses,” Opt. Lett. 37(22), 4639–4641 (2012).
[Crossref] [PubMed]

G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, and A. F. Abouraddy, “Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers,” Opt. Lett. 37(13), 2751–2753 (2012).
[Crossref] [PubMed]

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Terry, F. L.

Toulouse, J.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
[Crossref]

Wallner, O.

Wang, A.

Wang, X.

Wei, W.

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

Wolchover, N. A.

Xia, C.

Xiao, H.

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
[Crossref]

Xu, K.

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
[Crossref]

Yamagishi, T.

Yamashita, T.

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
[Crossref] [PubMed]

Yang, Z.

Yu, H.

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
[Crossref]

Yu, S.

S. Yu, D. Li, H. Chong, C. Sun, H. Yu, and K. Xu, Biomed. “In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor,” Opt. Express 5(1), 275–286 (2014).
[Crossref]

Anal. Chem. (1)

B. Mizaikoff, “Mid-IR fiber-optic sensors,” Anal. Chem. 75(11), 258A–267A (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[Crossref]

C. R. Chim. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5(12), 873–883 (2002).
[Crossref]

Glastech. Ber. (1)

W. Egel-Hess and E. Roeder, “Extrusion of glass melts-influence of wall friction effects on the die swell phenomenon,” Glastech. Ber. 62, 279–284 (1989).

Int. J. Appl. Glass Sci. (1)

G. Tao, A. M. Stolyarov, and A. F. Abouraddy, “Multimaterial fibers,” Int. J. Appl. Glass Sci. 3(4), 349–368 (2012).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (1)

G. Tao, H. Guo, L. Feng, M. Liu, W. Wei, and B. Peng, “Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration,” J. Am. Ceram. Soc. 92(10), 2226–2229 (2009).
[Crossref]

J. Appl. Phys. (1)

D. J. Gibson and J. A. Harrington, “Extrusion of hollow waveguide preforms with a one-dimensional photonic bandgap structure,” J. Appl. Phys. 95(8), 3895–3900 (2004).
[Crossref]

J. Mater. Process. Technol. (1)

A. Belwalkar, H. Xiao, W. Z. Misiolek, and J. Toulouse, “Extruded tellurite glass optical fiber preforms,” J. Mater. Process. Technol. 210(14), 2016–2022 (2010).
[Crossref]

J. Non-Cryst. Solids (5)

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids 5(5), 377–388 (1971).
[Crossref]

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids 7(2), 203–220 (1972).
[Crossref]

D. Furniss and A. B. Seddon, “Towards monomode proportioned fibreoptic preforms by extrusion,” J. Non-Cryst. Solids 256–257, 232–236 (1999).
[Crossref]

S. D. Savage, C. A. Miller, D. Furniss, and A. B. Seddon, “Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers,” J. Non-Cryst. Solids 354(29), 3418–3427 (2008).
[Crossref]

K. Itoh, K. Miura, I. Masuda, M. Iwakura, and T. Yamashita, “Low-loss fluorozirco-aluminate glass fiber,” J. Non-Cryst. Solids 167(1-2), 112–116 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

J. J. Kaufman, G. Tao, S. Shabahang, D. S. Deng, Y. Fink, and A. F. Abouraddy, “Thermal drawing of high-density macroscopic arrays of well-ordered sub-5-nm-diameter nanowires,” Nano Lett. 11(11), 4768–4773 (2011).
[Crossref] [PubMed]

Opt. Eng. (1)

F. Capasso, “High-performance midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111102 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Opt. Mater. Express (1)

Polym. Eng. Sci. (1)

C. Boyce, E. L. Montagut, and A. S. Argon, “The effects of thermomechanical coupling on the cold drawing process of glassy polymers,” Polym. Eng. Sci. 32(16), 1073–1085 (1992).
[Crossref]

Proc. SPIE (3)

A. B. Seddon, D. Furniss, and A. Motesharei, “Extrusion method of making fibre optic preforms of special glasses,” Proc. SPIE 3416, 32–42 (1998).
[Crossref]

M. Saad, “Heavy metal fluoride glass fibers and their applications,” Proc. SPIE 8307, 83070N (2011).
[Crossref]

L. B. Shaw, R. R. Gattass, J. S. Sanghera, and I. D. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 µm,” Proc. SPIE 7914, 79140P (2011).
[Crossref]

SPIE (1)

G. Tao and A. F. Abouraddy, “Multimaterial fibers: a new concept in infrared fiber optics,” SPIE 9098, 90980V (2014).

Other (4)

J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2003).

J. L. Adam and X. H. Zhang, Chalcogenide Glasses: Preparation, Properties and Applications (Woodhead Publishing, 2013).

A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge University, 2013).

http://www.amorphousmaterials.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Multimaterial co-extrusion of ChG fiber preforms. (a) A 48-mm-diameter, 75-mm-long Ge-Sb-Se (G) uni-material extrusion billet. (b) Schematic of the uni-material extrusion process. (c) The ~1.3-m-long, 12-mm-diameter extruded ChG rod. (d) A 50-mm-long section of the extruded rod in (c). (e) Billet structure for multimaterial co-extrusion. Three circular discs are vertically stacked. From top to bottom, the discs correspond to the core, cladding, and external jacket, respectively, in the subsequently extruded rod [6]. P: PES; G1: As2S1.5Se1.5; G2: As2S3. (f) Schematic of the multimaterial extrusion process. (g) Schematic of the resulting extruded multimaterial rod. (h)-(i) Optical micrographs of the extruded multimaterial rod cross section at two axial positions z1 and z2.

Fig. 2
Fig. 2

Efficient multimaterial coextrusion of a ChG fiber preform. (a) Construction of the extrusion billet. G1: As2Se3; G2: As2S3; P: PES. The G1 and G2 circular discs (corresponding to the core and cladding materials, respectively) are stacked and placed inside the stepped hole in the polymer (P) rod. Inset shows the schematic structure of the billet. (b) Schematic of the coextrusion process. (c) Photograph of the multimaterial extruded rod.

Fig. 3
Fig. 3

Thermal drawing of the multimaterial extruded preform into a fiber. (a) i. A thin polymer film is rolled around the extruded rod. ii. The consolidated preform is thermally drawn into an extended fiber. (b) Photograph of a 46-m-long, 1-mm-diameter robust multimaterial ChG fiber produced from a single preform [Fig. 2(c)]. (c) Measured stress-strain curves (on a logarithmic scale) for the ChG As2Se3 and the polymer PES, both used in constructing our fibers. The samples are each in the form of a fiber. The horizontal dashed lines indicate the stress at the failure strain of the As2Se3 fiber for comparison. The insets show individual stress-strain curves on a linear scale; note the difference in horizontal and vertical scales between the two materials.

Fig. 4
Fig. 4

Axial variation in core diameter. (a) Photograph of preform side view. G1 and G2 are same as in Fig. 2. (b) Ratio of the core diameter to the cladding diameter measured at different axial positions along the 46-m-long drawn fiber. (c) Reflection optical micrographs of fiber cross sections corresponding to positions (i), (ii), and (iii) highlighted in (b). Dotted circles identify the interfaces between the cladding (G2) with the built-in polymer jacket (P), and that between the core (G1) and cladding (G2). (d) Intensity at the fiber output when a white light and (e) a laser (wavelength 1.55 μm) are transmitted through 10-cm-long fiber sections.

Metrics