Abstract

We report the laser irradiation-induced oxidation of bismuth metal investigated in situ by micro-Raman spectroscopy as a function of irradiation power and time. The purely optical synthesis and characterization of β-Bi2O3 oxide microislands on metallic Bi surfaces is shown to be stable over time, even at room-temperature. By closely examining possible reactions on simple Bi morphologies it is revealed for the first time that the ensuing oxide phase is critically dependent on the final oxide volume and follows a fixed kinetic transformation sequence: 32O2(g)+2Bi(l)βBi2O3(s)αBi2O3(s). These findings are unusual within the framework of traditional Bi2O3 thermal transformation relations. An electrostatic mechanism involving a changing Bi2O3 surface-to-volume ratio is proposed to explain the room-temperature metastability of small β-Bi2O3 volumes and the subsequent transformation sequence, as well as unifying the results of previous studies.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The study of optical band edge property of bismuth oxide nanowires α-Bi2O3

Ching-Hwa Ho, Ching-Hsiang Chan, Ying-Sheng Huang, Li-Chia Tien, and Liang-Chiun Chao
Opt. Express 21(10) 11965-11972 (2013)

Annealing effect of linear and nonlinear optical properties of Ag:Bi2O3 nanocomposite films

Peng Zhou, Guanjun You, Jing Li, Songyou Wang, Shixiong Qian, and Liangyao Chen
Opt. Express 13(5) 1508-1514 (2005)

References

  • View by:
  • |
  • |
  • |

  1. N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
    [Crossref]
  2. J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
    [Crossref]
  3. H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
    [Crossref] [PubMed]
  4. Q. Hu, J. Wang, Y. Zhao, and D. Li, “A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells,” Opt. Express 19(S1), A20–A27 (2011).
    [Crossref]
  5. H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
    [Crossref]
  6. M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
    [Crossref]
  7. H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
    [Crossref]
  8. J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
    [Crossref]
  9. L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
    [Crossref]
  10. R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
    [Crossref]
  11. L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
    [Crossref]
  12. T. B. Tran and A. Navrotsky, “Energetics of disordered and ordered rare earth oxide-stabilized bismuth oxide ionic conductors,” Phys. Chem. Chem. Phys. 16(5), 2331–2337 (2014).
    [Crossref]
  13. Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
    [Crossref]
  14. M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
    [Crossref]
  15. V. V. Zyryanov, “Mechanochemical synthesis of complex oxides,” Russ. Chem. Rev. 77, 105 (2008).
    [Crossref]
  16. V. V. Zyryanov and N. F. Uvarov, “Mechanochemical synthesis and electrical conductivity of Bi1.6M0.4O3x (M = Ca, Ca0.5Sr0.5, In, Y, La) metastable fluorite solid solutions,” Inorg. Mater. 40(7), 729–734 (2004).
    [Crossref]
  17. H. -Y. Deng, W.-C. Hao, and H.-Z. Xu, “A transition phase in the transformation from α-, β- and ε- to δ-bismuth oxide,” Chin. Phys. Lett. 28(5), 056101 (2011).
    [Crossref]
  18. H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
    [Crossref]
  19. B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
    [Crossref]
  20. M. Gotić, S. Popović, and S. Musić, “Influence of synthesis procedure on the morphology of bismuth oxide particles,” Materials Letters 61(3), 709–714 (2007).
    [Crossref]
  21. A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).
  22. T. P. Gujar, V. R. Shinde, and C. D. Lokhande, “The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films,” Appl. Surf. Sci. 254(13), 4186–4190 (2008).
    [Crossref]
  23. C.-C. Huang, T.-Y Wen, and K.-Z. Fung, “Orientation-controlled phase transformation of Bi2O3 during oxidation of electrodeposited Bi film,” Mater. Res. Bull. 41(1), 110–118 (2006).
    [Crossref]
  24. M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).
  25. K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
    [Crossref]
  26. W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
    [Crossref]
  27. S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).
  28. L. Kumari, J.-H. Lin, and Y.-R. Ma, “One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties,” J. Phys.: Condens. Matter 19(40), 406204 (2007).
  29. K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
    [Crossref]
  30. M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
    [Crossref]
  31. D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
    [Crossref]
  32. O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
    [Crossref]
  33. M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
    [Crossref]
  34. M. S. R. Hynes and H. Rawson, “Bismuth trioxide glasses,” J. Soc. Glass Technol. 41, 347–349 (1957).
  35. M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
    [Crossref] [PubMed]
  36. J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
    [Crossref]
  37. F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
    [Crossref]
  38. J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
    [Crossref]
  39. J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
    [Crossref]
  40. L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
    [Crossref]
  41. M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
    [Crossref]
  42. A. F. Gualtieri, S. Immovilli, and M. Prudenzianti, “Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3,” Powder Diffr. 12(2), 90 (1997).
    [Crossref]
  43. N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
    [Crossref] [PubMed]
  44. T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
    [Crossref]
  45. J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
    [Crossref] [PubMed]
  46. V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).
  47. Y.-H Lei and Z.-X. Chen, “Density functional study of the stability of various α-Bi2O3 surfaces,” J. Chem. Phys. 138(5), 054703 (2013).
    [Crossref] [PubMed]
  48. P. W. Tasker, “The stability of ionic crystal surfaces,” J. Phys. C: Solid State Phys. 12(22), 4977 (1979).
    [Crossref]
  49. E. R. Smith, “Electrostatic energy in ionic crystals,” Proc. R. Soc. Lond. A 375, 475–505 (1981).
    [Crossref]
  50. H. A. Harwig and J. W. Weenk, “Phase relations in bismuthsesquioxide,” Z. Anorg. Allg. Chem. 444(1), 167–177 (1978).
    [Crossref]

2014 (1)

T. B. Tran and A. Navrotsky, “Energetics of disordered and ordered rare earth oxide-stabilized bismuth oxide ionic conductors,” Phys. Chem. Chem. Phys. 16(5), 2331–2337 (2014).
[Crossref]

2013 (3)

M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
[Crossref]

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Y.-H Lei and Z.-X. Chen, “Density functional study of the stability of various α-Bi2O3 surfaces,” J. Chem. Phys. 138(5), 054703 (2013).
[Crossref] [PubMed]

2012 (2)

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

2011 (4)

H. -Y. Deng, W.-C. Hao, and H.-Z. Xu, “A transition phase in the transformation from α-, β- and ε- to δ-bismuth oxide,” Chin. Phys. Lett. 28(5), 056101 (2011).
[Crossref]

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Q. Hu, J. Wang, Y. Zhao, and D. Li, “A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells,” Opt. Express 19(S1), A20–A27 (2011).
[Crossref]

2010 (1)

Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
[Crossref]

2009 (2)

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

2008 (3)

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

V. V. Zyryanov, “Mechanochemical synthesis of complex oxides,” Russ. Chem. Rev. 77, 105 (2008).
[Crossref]

T. P. Gujar, V. R. Shinde, and C. D. Lokhande, “The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films,” Appl. Surf. Sci. 254(13), 4186–4190 (2008).
[Crossref]

2007 (4)

M. Gotić, S. Popović, and S. Musić, “Influence of synthesis procedure on the morphology of bismuth oxide particles,” Materials Letters 61(3), 709–714 (2007).
[Crossref]

L. Kumari, J.-H. Lin, and Y.-R. Ma, “One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties,” J. Phys.: Condens. Matter 19(40), 406204 (2007).

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

2006 (5)

C.-C. Huang, T.-Y Wen, and K.-Z. Fung, “Orientation-controlled phase transformation of Bi2O3 during oxidation of electrodeposited Bi film,” Mater. Res. Bull. 41(1), 110–118 (2006).
[Crossref]

R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
[Crossref]

J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
[Crossref]

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
[Crossref] [PubMed]

2005 (2)

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).

2004 (2)

V. V. Zyryanov and N. F. Uvarov, “Mechanochemical synthesis and electrical conductivity of Bi1.6M0.4O3x (M = Ca, Ca0.5Sr0.5, In, Y, La) metastable fluorite solid solutions,” Inorg. Mater. 40(7), 729–734 (2004).
[Crossref]

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

2003 (1)

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

2002 (1)

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

1999 (1)

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

1998 (1)

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

1997 (3)

A. F. Gualtieri, S. Immovilli, and M. Prudenzianti, “Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3,” Powder Diffr. 12(2), 90 (1997).
[Crossref]

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

1992 (1)

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

1991 (1)

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

1983 (1)

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
[Crossref]

1981 (1)

E. R. Smith, “Electrostatic energy in ionic crystals,” Proc. R. Soc. Lond. A 375, 475–505 (1981).
[Crossref]

1979 (1)

P. W. Tasker, “The stability of ionic crystal surfaces,” J. Phys. C: Solid State Phys. 12(22), 4977 (1979).
[Crossref]

1978 (4)

H. A. Harwig and J. W. Weenk, “Phase relations in bismuthsesquioxide,” Z. Anorg. Allg. Chem. 444(1), 167–177 (1978).
[Crossref]

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
[Crossref]

1977 (1)

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

1975 (1)

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

1964 (1)

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

1957 (1)

M. S. R. Hynes and H. Rawson, “Bismuth trioxide glasses,” J. Soc. Glass Technol. 41, 347–349 (1957).

Abraham, F.

N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
[Crossref] [PubMed]

Aldingera, F.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Alexe, M.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Arroyo, R.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Atou, T.

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

Ayeshb, A.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Boussaha, R.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Brown, S. A.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Calleja, J. M.

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

Camacho-López, M. A.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).

Caraman, M.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Cardona, M.

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

Chase, S. J.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Chen, J.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Chen, Z.-X.

Y.-H Lei and Z.-X. Chen, “Density functional study of the stability of various α-Bi2O3 surfaces,” J. Chem. Phys. 138(5), 054703 (2013).
[Crossref] [PubMed]

Chiba, H.

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

Choo, J.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Condurache-Bota, S.

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

Córdoba, G.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Cornei, N.

N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
[Crossref] [PubMed]

Deng, H. -Y.

H. -Y. Deng, W.-C. Hao, and H.-Z. Xu, “A transition phase in the transformation from α-, β- and ε- to δ-bismuth oxide,” Chin. Phys. Lett. 28(5), 056101 (2011).
[Crossref]

Deng, S. Z.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Denisov, V. N.

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

Diaz-Guerra, C.

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Ding, H.

Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
[Crossref]

Drasozean, R.

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

El Jani, B.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Elsayed-Ali, H. E.

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

Escobar-Alarcón, L.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Fan, H. J.

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Faqir, H.

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

Fergus, J. W.

J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
[Crossref]

Fitouri, H.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Fortner, J.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Fung, K.-Z.

C.-C. Huang, T.-Y Wen, and K.-Z. Fung, “Orientation-controlled phase transformation of Bi2O3 during oxidation of electrodeposited Bi film,” Mater. Res. Bull. 41(1), 110–118 (2006).
[Crossref]

George, T. F.

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Gerards, A. G.

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

Gheorghies, C.

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

Gong, J.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Gotic, M.

M. Gotić, S. Popović, and S. Musić, “Influence of synthesis procedure on the morphology of bismuth oxide particles,” Materials Letters 61(3), 709–714 (2007).
[Crossref]

Gualtieri, A. F.

A. F. Gualtieri, S. Immovilli, and M. Prudenzianti, “Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3,” Powder Diffr. 12(2), 90 (1997).
[Crossref]

Gujar, T. P.

T. P. Gujar, V. R. Shinde, and C. D. Lokhande, “The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films,” Appl. Surf. Sci. 254(13), 4186–4190 (2008).
[Crossref]

Hao, W.-C.

H. -Y. Deng, W.-C. Hao, and H.-Z. Xu, “A transition phase in the transformation from α-, β- and ε- to δ-bismuth oxide,” Chin. Phys. Lett. 28(5), 056101 (2011).
[Crossref]

Hardcastle, F. D.

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

Harnagea, C.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Haro-Poniatowski, E.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Harwig, H. A.

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
[Crossref]

H. A. Harwig and J. W. Weenk, “Phase relations in bismuthsesquioxide,” Z. Anorg. Allg. Chem. 444(1), 167–177 (1978).
[Crossref]

Hietschold, M.

M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
[Crossref]

Höhne, J.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Hu, H. M.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Hu, Q.

Huang, C.-C.

C.-C. Huang, T.-Y Wen, and K.-Z. Fung, “Orientation-controlled phase transformation of Bi2O3 during oxidation of electrodeposited Bi film,” Mater. Res. Bull. 41(1), 110–118 (2006).
[Crossref]

Hüfner, S.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Hynes, M. S. R.

M. S. R. Hynes and H. Rawson, “Bismuth trioxide glasses,” J. Soc. Glass Technol. 41, 347–349 (1957).

Immovilli, S.

A. F. Gualtieri, S. Immovilli, and M. Prudenzianti, “Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3,” Powder Diffr. 12(2), 90 (1997).
[Crossref]

In, J.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Ingham, B.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Ismail, R. A.

R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
[Crossref]

Ivlev, A. N.

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

Katsuta, S.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
[Crossref]

Kikuchi, M.

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

Kim, B.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Koenig, S. H.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Kumari, L.

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

L. Kumari, J.-H. Lin, and Y.-R. Ma, “One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties,” J. Phys.: Condens. Matter 19(40), 406204 (2007).

Lannin, J. S.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

Lazor, P.

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Lee, Y.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Lei, Y.-H

Y.-H Lei and Z.-X. Chen, “Density functional study of the stability of various α-Bi2O3 surfaces,” J. Chem. Phys. 138(5), 054703 (2013).
[Crossref] [PubMed]

Leontie, L.

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Li, C.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Li, D.

Li, Q. W.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Lin, J.-H.

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

L. Kumari, J.-H. Lin, and Y.-R. Ma, “One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties,” J. Phys.: Condens. Matter 19(40), 406204 (2007).

Lipin, A. S.

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

Liu, M.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Lokhande, C. D.

T. P. Gujar, V. R. Shinde, and C. D. Lokhande, “The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films,” Appl. Surf. Sci. 254(13), 4186–4190 (2008).
[Crossref]

Lu, D. Y.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Ma, Y.-R.

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

L. Kumari, J.-H. Lin, and Y.-R. Ma, “One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties,” J. Phys.: Condens. Matter 19(40), 406204 (2007).

Mai, W.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Mavrin, B. N.

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

Medermach, J. W.

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

Mehring, M.

M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
[Crossref]

Mentré, O.

N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
[Crossref] [PubMed]

Mitch, M. G.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Miyayama, M.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
[Crossref]

Mo, M. S.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Morales-Luckie, R. A.

A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).

Music, S.

M. Gotić, S. Popović, and S. Musić, “Influence of synthesis procedure on the morphology of bismuth oxide particles,” Materials Letters 61(3), 709–714 (2007).
[Crossref]

Näfea, H.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Nánai, L.

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Natalie, F.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Navrotsky, A.

T. B. Tran and A. Navrotsky, “Energetics of disordered and ordered rare earth oxide-stabilized bismuth oxide ionic conductors,” Phys. Chem. Chem. Phys. 16(5), 2331–2337 (2014).
[Crossref]

Orlov, V. G.

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

Park, J.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Partridge, J.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Picquart, M.

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Piqueras, J.

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Popovic, S.

M. Gotić, S. Popović, and S. Musić, “Influence of synthesis procedure on the morphology of bismuth oxide particles,” Materials Letters 61(3), 709–714 (2007).
[Crossref]

Prudenzianti, M.

A. F. Gualtieri, S. Immovilli, and M. Prudenzianti, “Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3,” Powder Diffr. 12(2), 90 (1997).
[Crossref]

Qian, Y. T.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Rabey, A.

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Rawson, H.

M. S. R. Hynes and H. Rawson, “Bismuth trioxide glasses,” J. Soc. Glass Technol. 41, 347–349 (1957).

Rusu, G. I.

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

Salazar-Pérez, A. J.

A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).

Sammes, N. M.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Sánchez-Mendieta, V.

A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).

Schylze, S.

M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
[Crossref]

Seo, K.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Shan, Y.

Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
[Crossref]

Shebanova, O. N.

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

Shinde, V. R.

T. P. Gujar, V. R. Shinde, and C. D. Lokhande, “The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films,” Appl. Surf. Sci. 254(13), 4186–4190 (2008).
[Crossref]

Shlesinger, M.

M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
[Crossref]

Shulz, H.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Smith, E. R.

E. R. Smith, “Electrostatic energy in ionic crystals,” Proc. R. Soc. Lond. A 375, 475–505 (1981).
[Crossref]

Snyder, R. L.

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

Stevens, K. J.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Suenaga, Y.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
[Crossref]

Syono, Y.

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

Tancet, N.

N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
[Crossref] [PubMed]

Tasker, P. W.

P. W. Tasker, “The stability of ionic crystal surfaces,” J. Phys. C: Solid State Phys. 12(22), 4977 (1979).
[Crossref]

Tigau, N.

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

Tompsett, G. A.

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

Toney, M. F.

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Tran, T. B.

T. B. Tran and A. Navrotsky, “Energetics of disordered and ordered rare earth oxide-stabilized bismuth oxide ionic conductors,” Phys. Chem. Chem. Phys. 16(5), 2331–2337 (2014).
[Crossref]

Trentelman, K.

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

Uvarov, N. F.

V. V. Zyryanov and N. F. Uvarov, “Mechanochemical synthesis and electrical conductivity of Bi1.6M0.4O3x (M = Ca, Ca0.5Sr0.5, In, Y, La) metastable fluorite solid solutions,” Inorg. Mater. 40(7), 729–734 (2004).
[Crossref]

Vajtai, R.

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Vila, M.

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Wachs, I. E.

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

Wang, J.

Wang, W.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Wang, Y.

Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
[Crossref]

Warren, J. L.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Weenk, J. W.

H. A. Harwig and J. W. Weenk, “Phase relations in bismuthsesquioxide,” Z. Anorg. Allg. Chem. 444(1), 167–177 (1978).
[Crossref]

Wen, T.-Y

C.-C. Huang, T.-Y Wen, and K.-Z. Fung, “Orientation-controlled phase transformation of Bi2O3 during oxidation of electrodeposited Bi film,” Mater. Res. Bull. 41(1), 110–118 (2006).
[Crossref]

Wen, Y.

Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
[Crossref]

Wenning, U.

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Wenzel, R. G.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Werner, P.

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Xu, H.-Z.

H. -Y. Deng, W.-C. Hao, and H.-Z. Xu, “A transition phase in the transformation from α-, β- and ε- to δ-bismuth oxide,” Chin. Phys. Lett. 28(5), 056101 (2011).
[Crossref]

Xu, J. B.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Xu, N. S.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Yanagida, H.

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
[Crossref]

Yang, B. J.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Yang, X. G.

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

Yang, Z.

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Yarnell, J. L.

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Yoon, I.

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Yu, R. Q.

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Zacharias, M.

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Zayed, M. K.

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

Zepeda, M. A.

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Zhao, Y.

Zhou, J.

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

Zyryanov, V. V.

V. V. Zyryanov, “Mechanochemical synthesis of complex oxides,” Russ. Chem. Rev. 77, 105 (2008).
[Crossref]

V. V. Zyryanov and N. F. Uvarov, “Mechanochemical synthesis and electrical conductivity of Bi1.6M0.4O3x (M = Ca, Ca0.5Sr0.5, In, Y, La) metastable fluorite solid solutions,” Inorg. Mater. 40(7), 729–734 (2004).
[Crossref]

Acta Cryst. (1)

K. J. Stevens, B. Ingham, M. F. Toney, S. A. Brown, J. Partridge, A. Ayeshb, and F. Natalie, “Structure of oxidized bismuth nanoclusters,” Acta Cryst. B63, 569–576 (2007).
[Crossref]

Appl. Phys. A (1)

H. Fitouri, R. Boussaha, A. Rabey, and B. El Jani, “Oxidation of bismuth nanodroplets deposit on GaAs substrate,” Appl. Phys. A 112(3), 701–710 (2013).
[Crossref]

Appl. Phys. Lett. (1)

M. Vila, C. Diaz-Guerra, and J. Piqueras, “Laser irradiation-induced α to δ phase transformation in Bi2O3 ceramics and nanowires,” Appl. Phys. Lett. 101(7), 071905 (2012).
[Crossref]

Appl. Surf. Sci. (1)

T. P. Gujar, V. R. Shinde, and C. D. Lokhande, “The influence of oxidation temperature on structural, optical and electrical properties of thermally oxidized bismuth oxide films,” Appl. Surf. Sci. 254(13), 4186–4190 (2008).
[Crossref]

Chem. Eur. J. (1)

J. In, I. Yoon, K. Seo, J. Park, J. Choo, Y. Lee, and B. Kim, “Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy,” Chem. Eur. J. 17(4), 1304–1309 (2011).
[Crossref] [PubMed]

Chin. Phys. Lett. (1)

H. -Y. Deng, W.-C. Hao, and H.-Z. Xu, “A transition phase in the transformation from α-, β- and ε- to δ-bismuth oxide,” Chin. Phys. Lett. 28(5), 056101 (2011).
[Crossref]

Dalton Trans. (1)

M. Shlesinger, S. Schylze, M. Hietschold, and M. Mehring, “Metastable β-Bi2O3 nanoparticles with high photocatalytic activity from polynuclear bismuth oxide clusters,” Dalton Trans. 42(2), 1047–1056 (2013).
[Crossref]

Eur. J. Inorg. Chem. (1)

B. J. Yang, M. S. Mo, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, and Y. T. Qian, “A rational self-sacrificing template route to β-Bi2O3 nanotube arrays,” Eur. J. Inorg. Chem. 2004(9), 1785–1787 (2004).
[Crossref]

IBM J. Res. Dev. (1)

J. L. Yarnell, J. L. Warren, R. G. Wenzel, and S. H. Koenig, “Phonon dispersion curves in bismuth,” IBM J. Res. Dev. 8(3), 234 (1964).
[Crossref]

Inorg. Chem. (1)

N. Cornei, N. Tancet, F. Abraham, and O. Mentré, “New ε-Bi2O3 polymorph,” Inorg. Chem. 45(13), 4886–4888 (2006).
[Crossref] [PubMed]

Inorg. Mater. (1)

V. V. Zyryanov and N. F. Uvarov, “Mechanochemical synthesis and electrical conductivity of Bi1.6M0.4O3x (M = Ca, Ca0.5Sr0.5, In, Y, La) metastable fluorite solid solutions,” Inorg. Mater. 40(7), 729–734 (2004).
[Crossref]

J. Am. Ceram. Soc. (2)

M. Miyayama, S. Katsuta, Y. Suenaga, and H. Yanagida, “Electrical conduction in β-Bi2O3 doped with Sb2O3,” J. Am. Ceram. Soc. 66, 585 (1983).
[Crossref]

J. W. Medermach and R. L. Snyder, “Powder diffraction patterns and structures of the bismuth oxides,” J. Am. Ceram. Soc. 61(11–12), 494–497 (1978).
[Crossref]

J. Chem. Phys. (1)

Y.-H Lei and Z.-X. Chen, “Density functional study of the stability of various α-Bi2O3 surfaces,” J. Chem. Phys. 138(5), 054703 (2013).
[Crossref] [PubMed]

J. Eur. Ceram. Soc. (1)

N. M. Sammes, G. A. Tompsett, H. Näfea, and F. Aldingera, “Bismuth based oxide electrolytes – structure and ionic conductivity,” J. Eur. Ceram. Soc. 19(10), 1801–1826 (1999).
[Crossref]

J. Mater. Sci. (1)

Y. Wang, Y. Wen, H. Ding, and Y. Shan, “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes,” J. Mater. Sci. 45(5), 1385–1392 (2010).
[Crossref]

J. Phys. C: Solid State Phys. (1)

P. W. Tasker, “The stability of ionic crystal surfaces,” J. Phys. C: Solid State Phys. 12(22), 4977 (1979).
[Crossref]

J. Phys. D (1)

L. Kumari, J.-H. Lin, and Y.-R. Ma, “Laser oxidation and wide-band photoluminescence of thermal evaporated bismuth thin films,” J. Phys. D 41(2), 025405 (2008).
[Crossref]

J. Phys.: Condens. Matter (2)

L. Kumari, J.-H. Lin, and Y.-R. Ma, “One-dimensional Bi2O3 nanohooks: synthesis, characterization and optical properties,” J. Phys.: Condens. Matter 19(40), 406204 (2007).

V. N. Denisov, A. N. Ivlev, A. S. Lipin, B. N. Mavrin, and V. G. Orlov, “Raman spectra and lattice dynamics of single-crystal α-Bi2O3,” J. Phys.: Condens. Matter 9(23), 4967 (1997).

J. Power Sources (1)

J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources 162(1), 30–40 (2006).
[Crossref]

J. Raman Spectrosc. (3)

K. Trentelman, “A note on the characterization of bismuth black by Raman microspectroscopy,” J. Raman Spectrosc. 40(5), 585–589 (2009).
[Crossref]

D. Y. Lu, J. Chen, J. Zhou, S. Z. Deng, N. S. Xu, and J. B. Xu, “Raman spectroscopic study of oxidation and phase transition in W18O49 nanowires,” J. Raman Spectrosc. 38(2), 176–180 (2007).
[Crossref]

O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation,” J. Raman Spectrosc. 34(11), 845–852 (2003).
[Crossref]

J. Soc. Glass Technol. (1)

M. S. R. Hynes and H. Rawson, “Bismuth trioxide glasses,” J. Soc. Glass Technol. 41, 347–349 (1957).

J. Solid State Chem. (2)

F. D. Hardcastle and I. E. Wachs, “The molecular structure of bismuth oxide by Raman spectroscopy,” J. Solid State Chem. 97(2), 319–331 (1992).
[Crossref]

H. A. Harwig and A. G. Gerards, “Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide,” J. Solid State Chem. 26(3), 265–274 (1978).
[Crossref]

Mater. Res. Bull. (2)

C.-C. Huang, T.-Y Wen, and K.-Z. Fung, “Orientation-controlled phase transformation of Bi2O3 during oxidation of electrodeposited Bi film,” Mater. Res. Bull. 41(1), 110–118 (2006).
[Crossref]

T. Atou, H. Faqir, M. Kikuchi, H. Chiba, and Y. Syono, “A new high-pressure phase of bismuth oxide,” Mater. Res. Bull. 33(2), 289–292 (1998).
[Crossref]

Materials Letters (1)

M. Gotić, S. Popović, and S. Musić, “Influence of synthesis procedure on the morphology of bismuth oxide particles,” Materials Letters 61(3), 709–714 (2007).
[Crossref]

Opt. Express (1)

Opt. Mater. (1)

M. A. Camacho-López, L. Escobar-Alarcón, M. Picquart, R. Arroyo, G. Córdoba, and E. Haro-Poniatowski, “Micro-Raman study of the m-MoO2 to α-MoO3 transformation induced by cw-laser irradiation,” Opt. Mater. 33(3), 480–484 (2011).
[Crossref]

Phys. Chem. Chem. Phys. (1)

T. B. Tran and A. Navrotsky, “Energetics of disordered and ordered rare earth oxide-stabilized bismuth oxide ionic conductors,” Phys. Chem. Chem. Phys. 16(5), 2331–2337 (2014).
[Crossref]

Phys. Rev. B (1)

J. S. Lannin, J. M. Calleja, and M. Cardona, “Second-order Raman scattering in the group-Vb semimetals: Bi, Sb, and As,” Phys. Rev. B 12(2), 585–593 (1975).
[Crossref]

Phys. Rev. B. (1)

M. K. Zayed and H. E. Elsayed-Ali, “Condensation on (002) graphite of liquid bismuth far below its bulk melting point,” Phys. Rev. B. 72(20), 205426 (2005).
[Crossref]

Phys. Rev. Lett. (1)

M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, and J. S. Lannin, “Phase transition in ultrathin Bi films,” Phys. Rev. Lett. 67(7), 875–878 (1991).
[Crossref] [PubMed]

Physica E (1)

W. Wang, M. Liu, Z. Yang, W. Mai, and J. Gong, “Synthesis and Raman optical properties of single-crystalline Bi nanowires,” Physica E 44(7–8), 1142–1145 (2012).
[Crossref]

Powder Diffr. (1)

A. F. Gualtieri, S. Immovilli, and M. Prudenzianti, “Powder X-ray diffraction data for the new polymorphic compound omega-Bi2O3,” Powder Diffr. 12(2), 90 (1997).
[Crossref]

Proc. R. Soc. Lond. A (1)

E. R. Smith, “Electrostatic energy in ionic crystals,” Proc. R. Soc. Lond. A 375, 475–505 (1981).
[Crossref]

Rom. J. Chem. (1)

S. Condurache-Bota, G. I. Rusu, N. Tigau, R. Drasozean, and C. Gheorghies, “Structural and optical characterization of thermally oxidized bismuth films,” Rom. J. Chem. 54(3), 205–211 (2009).

Russ. Chem. Rev. (1)

V. V. Zyryanov, “Mechanochemical synthesis of complex oxides,” Russ. Chem. Rev. 77, 105 (2008).
[Crossref]

Small (1)

H. J. Fan, P. Werner, and M. Zacharias, “Semiconductor nanowires: from self-organization to patterned growth,” Small 2(6), 700–717 (2006).
[Crossref] [PubMed]

Superficies y Vacío (1)

A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, and V. Sánchez-Mendieta, “Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles,” Superficies y Vacío 18(3), 4–8 (2005).

Surf. Sci. (1)

L. Leontie, M. Caraman, M. Alexe, and C. Harnagea, “Structural and optical characteristics of bismuth oxide thin films,” Surf. Sci. 507–510, 480–485 (2002).
[Crossref]

Surf. Sci. Nanotech. (1)

R. A. Ismail, “Characteristics of bismuth trioxide film prepared by rapid thermal oxidation,” Surf. Sci. Nanotech. 4, 563–565 (2006).
[Crossref]

Thin Solid Films (1)

L. Nánai, R. Vajtai, and T. F. George, “Laser-induced oxidation of metals: state of the art,” Thin Solid Films 298, 160–164 (1997).
[Crossref]

Z. Anorg. Allg. Chem. (2)

H. A. Harwig, “On the structure of bismuthsesquioxide: the α, β, γ, and δ-phase,” Z. Anorg. Allg. Chem. 444(1), 151–166 (1978).
[Crossref]

H. A. Harwig and J. W. Weenk, “Phase relations in bismuthsesquioxide,” Z. Anorg. Allg. Chem. 444(1), 167–177 (1978).
[Crossref]

Z. Phys. B (1)

J. Höhne, U. Wenning, H. Shulz, and S. Hüfner, “Temperature dependence of the k=0 optical phonons of Bi and Sb,” Z. Phys. B 27(4), 297–302 (1977).
[Crossref]

Other (1)

M. A. Zepeda, M. Picquart, and E. Haro-Poniatowski, “Laser induced oxidation effects in bismuth thin films,” MRS Proceedings1477, (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical micrographs of representative Bi surfaces examined in this study. (a) Smooth, (b) rough, and (c) small particulates on a glass slide. (d) The micro-Raman spectra measured at very low laser power density (5×102 W· cm−2) from a smooth Bi surface with the inset expanded over the second-order bismuth harmonics.
Fig. 2
Fig. 2 Raman spectra of smooth bismuth surface (see Fig. 1(a)) for (a) increasing laser power, and (b) decreasing laser power. The insets expand these data over the first-order bismuth optical phonon range. For decreasing power, time was spent between each measurement to allow for cooling. The three solid vertical lines at 128, 315, and 461 cm−1 represent the three modes of β-Bi2O3. Spectra have been scaled and shifted vertically for clarity.
Fig. 3
Fig. 3 Existence domains and transformation relations of Bi and the four main Bi2O3 polymorphs [1, 7]. The light broken arrows represent bulk isotherm transformations, while the heavy solid arrows represent the micro-probe laser-induced transformations observed in this study. The processes of heating and cooling are indicated here by Δ and ∇, respectively. Temperature ranges without parentheses represent transition temperatures while the values in parentheses represent required minimum initial temperatures.
Fig. 4
Fig. 4 (a) Representative unpolarized Raman spectra from bismuth metal and resultant laser-induced Bi2O3 phases. Traces labeled ome-4-10-2133-i001.JPG, ome-4-10-2133-i002.JPG and ome-4-10-2133-i003.JPG represent the pure phase spectra, while the spectra labeled ome-4-10-2133-i004.JPG portray an initial (and sometimes final) combined phase. (b) Chosen ome-4-10-2133-i005.JPG transitional dual spectra for longer irradiation exposures. Arrows between traces indicate the observed oxidation phase sequence and all spectra have been normalized (normalization factors given) and offset for clarity. (c) Schematic of oxide aggregation leading to ome-4-10-2133-i005.JPG transition.

Tables (1)

Tables Icon

Table 1 Laser-induced bismuth oxide phase results for varying bismuth surfaces (corresponding to those shown in Figs. 1(a)–1(c)) irradiated by a large (4.2 μm) and small (1.7 μm) focused 632.8 nm laser beam. Representative Raman spectra of resulting phase(s) match with those given in Fig. 4(a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

3 2 O 2 ( g ) + 2 Bi ( l ) β Bi 2 O 3 ( s ) α Bi 2 O 3 ( s ) ,

Metrics