Abstract

The prospective magnetooptical TGG, TAG and Ce:TAG ceramics for large-aperture Faraday isolators for lasers with average power more than 100W are compared. TGG ceramics is 1.5 times inferior to TGG crystals, whereas TAG ceramics is comparable with TGG crystals in maximum radiation power at the same isolation ratio. Optical power of their thermal lenses is also identical. Improvement of ceramics growth technologies and using doping for increasing Verdet constant is expected to additionally reduce thermal distortions in ceramics.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power Faraday isolators based on TAG ceramics

Dmitry Zheleznov, Aleksey Starobor, Oleg Palashov, Chong Chen, and Shengming Zhou
Opt. Express 22(3) 2578-2583 (2014)

TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov
Opt. Express 22(4) 4144-4151 (2014)

Cryogenic Faraday isolator with a disk-shaped magneto-optical element

Dmitry S. Zheleznov, Aleksey V. Starobor, Oleg V. Palashov, and Efim A. Khazanov
J. Opt. Soc. Am. B 29(4) 786-792 (2012)

References

  • View by:
  • |
  • |
  • |

  1. A. N. Malshakov, G. A. Pasmanik, and A. K. Potemkin, “Comparative characteristics of magneto-optical materials,” Appl. Opt. 36(25), 6403–6410 (1997).
    [Crossref] [PubMed]
  2. G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
    [Crossref]
  3. E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
    [Crossref]
  4. I. Ivanov, A. Bulkanov, E. Khazanov, I. B. Mukhin, O. V. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO /EUROPE-EQEC 2009 (2009), p. CE.P.12 MON.
  5. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
    [Crossref]
  6. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
    [Crossref] [PubMed]
  7. R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
    [Crossref] [PubMed]
  8. I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
    [Crossref] [PubMed]
  9. R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
    [Crossref] [PubMed]
  10. D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
    [Crossref] [PubMed]
  11. H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. (Amst) 33(11), 1833–1836 (2011).
    [Crossref]
  12. D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
    [Crossref] [PubMed]
  13. M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
    [Crossref] [PubMed]
  14. A. G. Vyatkin and E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307 (2012).
    [Crossref]
  15. A. G. Vyatkin and E. A. Khazanov, “Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier,” Quantum Electron. 39(9), 814–820 (2009).
    [Crossref]
  16. R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
    [Crossref]
  17. A. V. Starobor, D. Zheleznov, O. Palashov, S. Zhou, and C. Chen, “Application of TAG and Ce:TAG Optical Ceramics in High-power Faraday Isolators,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. AM4A.37.
    [Crossref]
  18. I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
    [Crossref]
  19. A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).
  20. E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
    [Crossref]
  21. H. Yagi, “Konoshima’s transparent polycrystalline ceramic for photonics applications,” in 9th Laser Ceramics Symposium (2013).

2014 (4)

2013 (4)

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett. 38(10), 1751–1753 (2013).
[Crossref] [PubMed]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. (Amst) 33(11), 1833–1836 (2011).
[Crossref]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
[Crossref]

2009 (1)

A. G. Vyatkin and E. A. Khazanov, “Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier,” Quantum Electron. 39(9), 814–820 (2009).
[Crossref]

2008 (1)

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

2004 (2)

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[Crossref] [PubMed]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

2002 (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

1997 (1)

Amin, R. S.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Andreev, N. F.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Chen, C.

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

A. V. Starobor, D. Zheleznov, O. Palashov, S. Zhou, and C. Chen, “Application of TAG and Ce:TAG Optical Ceramics in High-power Faraday Isolators,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. AM4A.37.
[Crossref]

Fujimoto, Y.

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Furuse, H.

Guagliardo, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Ivanov, I.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Kagan, M. A.

Kaminskii, A. A.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

Kan, H.

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Kawanaka, J.

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Kawashima, T.

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Khazanov, E.

Khazanov, E. A.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

A. G. Vyatkin and E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307 (2012).
[Crossref]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
[Crossref]

A. G. Vyatkin and E. A. Khazanov, “Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier,” Quantum Electron. 39(9), 814–820 (2009).
[Crossref]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

M. A. Kagan and E. A. Khazanov, “Thermally induced birefringence in Faraday devices made from terbium gallium garnet-polycrystalline ceramics,” Appl. Opt. 43(32), 6030–6039 (2004).
[Crossref] [PubMed]

Lin, H.

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. (Amst) 33(11), 1833–1836 (2011).
[Crossref]

Lundock, R.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Mal’shakov, A. N.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Malshakov, A. N.

McFeron, D.

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Mironov, E. A.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

Motokoshi, S.

Mueller, G.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Nakatsuka, H. M.

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Nozawa, H.

Palashov, O.

Palashov, O. V.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
[Crossref]

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Pasmanik, G. A.

Potemkin, A. K.

Poteomkin, A. K.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Reitze, D. H.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Sergeev, A. M.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Shaykin, A. A.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Shirakawa, A.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

Silin, D. E.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

Snetkov, I.

Snetkov, I. L.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

Starobor, A.

Starobor, A. V.

I. L. Snetkov, R. Yasuhara, A. V. Starobor, and O. V. Palashov, “TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization,” Opt. Express 22(4), 4144–4151 (2014).
[Crossref] [PubMed]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
[Crossref]

A. V. Starobor, D. Zheleznov, O. Palashov, S. Zhou, and C. Chen, “Application of TAG and Ce:TAG Optical Ceramics in High-power Faraday Isolators,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. AM4A.37.
[Crossref]

Tanner, D. B.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

Teng, H.

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. (Amst) 33(11), 1833–1836 (2011).
[Crossref]

Tokita, S.

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Ueda, K.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

Voitovich, A. V.

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

Vyatkin, A. G.

A. G. Vyatkin and E. A. Khazanov, “Thermally induced scattering of radiation in laser ceramics with arbitrary grain size,” J. Opt. Soc. Am. B 29(12), 3307 (2012).
[Crossref]

A. G. Vyatkin and E. A. Khazanov, “Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier,” Quantum Electron. 39(9), 814–820 (2009).
[Crossref]

Yagi, H.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

H. Yagi, “Konoshima’s transparent polycrystalline ceramic for photonics applications,” in 9th Laser Ceramics Symposium (2013).

Yanagitani, T.

R. Yasuhara, I. Snetkov, A. Starobor, D. Zheleznov, O. Palashov, E. Khazanov, H. Nozawa, and T. Yanagitani, “Terbium gallium garnet ceramic Faraday rotator for high-power laser application,” Opt. Lett. 39(5), 1145–1148 (2014).
[Crossref] [PubMed]

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

R. Yasuhara, H. Nozawa, T. Yanagitani, S. Motokoshi, and J. Kawanaka, “Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG,” Opt. Express 21(25), 31443–31452 (2013).
[Crossref] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Yasuhara, R.

Yoneda, H.

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

Yoshida, H.

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Zelenogorsky, V. V.

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

Zheleznov, D.

Zheleznov, D. S.

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
[Crossref]

Zhou, S.

D. Zheleznov, A. Starobor, O. Palashov, C. Chen, and S. Zhou, “High-power Faraday isolators based on TAG ceramics,” Opt. Express 22(3), 2578–2583 (2014).
[Crossref] [PubMed]

D. Zheleznov, A. Starobor, O. Palashov, H. Lin, and S. Zhou, “Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping,” Opt. Lett. 39(7), 2183–2186 (2014).
[Crossref] [PubMed]

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. (Amst) 33(11), 1833–1836 (2011).
[Crossref]

A. V. Starobor, D. Zheleznov, O. Palashov, S. Zhou, and C. Chen, “Application of TAG and Ce:TAG Optical Ceramics in High-power Faraday Isolators,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. AM4A.37.
[Crossref]

Appl. Opt. (2)

Class. Quantum Gravity (1)

G. Mueller, R. S. Amin, D. Guagliardo, D. McFeron, R. Lundock, D. H. Reitze, and D. B. Tanner, “Method for compensation of thermally induced modal distortions in the input optical components of gravitational wave interferometers,” Class. Quantum Gravity 19(7), 1793–1801 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

E. A. Khazanov, N. F. Andreev, A. N. Mal’shakov, O. V. Palashov, A. K. Poteomkin, A. M. Sergeev, A. A. Shaykin, V. V. Zelenogorsky, I. Ivanov, R. S. Amin, G. Mueller, D. B. Tanner, and D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. 40(10), 1500–1510 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

JOSA B (1)

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” JOSA B 28(6), 1409–1415 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. (Amst) (1)

H. Lin, S. Zhou, and H. Teng, “Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications,” Opt. Mater. (Amst) 33(11), 1833–1836 (2011).
[Crossref]

Phys. Status Solidi (1)

I. L. Snetkov, D. E. Silin, O. V. Palashov, E. A. Khazanov, H. Yagi, T. Yanagitani, H. Yoneda, A. Shirakawa, K. Ueda, and A. A. Kaminskii, “Thermo-optical constants of sesquioxide laser ceramics Yb 3+ :Ln 2 O 3 (Ln=Y,Lu,Sc),” Phys. Status Solidi 10(6), 907–913 (2013).
[Crossref]

Quantum Electron. (2)

A. G. Vyatkin and E. A. Khazanov, “Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier,” Quantum Electron. 39(9), 814–820 (2009).
[Crossref]

E. A. Mironov, I. L. Snetkov, A. V. Voitovich, and O. V. Palashov, “Permanent-magnet Faraday isolator with the field intensity of 25 kOe,” Quantum Electron. 43(8), 740–743 (2013).
[Crossref]

Rev. Laser Eng. (1)

R. Yasuhara, S. Tokita, J. Kawanaka, H. Kan, T. Kawashima, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and H. M. Nakatsuka, “Novel Faraday Rotator by Use of Cryogenic TGG Ceramics,” Rev. Laser Eng. 36(APLS), 1306–1309 (2008).
[Crossref]

Other (4)

A. V. Starobor, D. Zheleznov, O. Palashov, S. Zhou, and C. Chen, “Application of TAG and Ce:TAG Optical Ceramics in High-power Faraday Isolators,” in Advanced Solid-State Lasers Congress (OSA, 2013), p. AM4A.37.
[Crossref]

A. V. Mezenov, L. N. Soms, and A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinebuilding, 1986).

I. Ivanov, A. Bulkanov, E. Khazanov, I. B. Mukhin, O. V. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO /EUROPE-EQEC 2009 (2009), p. CE.P.12 MON.

H. Yagi, “Konoshima’s transparent polycrystalline ceramic for photonics applications,” in 9th Laser Ceramics Symposium (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Photographs of TGG and TAG ceramic samples.
Fig. 2
Fig. 2 Temperature dependence of the Verdet constant of different ceramics: TGG – solid curve, TAG – rhombs, Ce:TAG –triangles).
Fig. 3
Fig. 3 Power dependence of depolarization at L = L45: TGG – crosses, TAG – rhombs, Ce:TAG – triangles.
Fig. 4
Fig. 4 Optical power of thermal lens versus radiation power for L = L45: TGG – crosses, TAG – rhombs, Ce:TAG – triangles.

Tables (1)

Tables Icon

Table 1 Ceramic-based FI characteristics.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

γ p = A 8 sin (φ) 2 φ 2 ( αQL P las λκ ) 2 X 2
φ=VHL
D= Lα P las 2π r h 2 κ ( P S ( 1ξ )Q )

Metrics