Abstract

Amplification of 10-ns laser pulses to an energy of 500 mJ at a 10-Hz repetition rate in a cryogenic multi-pass multi-total-reflection-active-mirror (multi-TRAM) amplifier was achieved. By using a multi-TRAM, which is a YAG ceramic composite with three Yb:YAG active layers, a maximum single-pass gain of 12 and a total storage energy of 1.5 J were obtained.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
1-J operation of monolithic composite ceramics with Yb:YAG thin layers: multi-TRAM at 10-Hz repetition rate and prospects for 100-Hz operation

Martin Divoky, Shigeki Tokita, Sungin Hwang, Toshiyuki Kawashima, Hirofumi Kan, Antonio Lucianetti, Tomas Mocek, and Junji Kawanaka
Opt. Lett. 40(6) 855-858 (2015)

High-energy, diode-pumped, nanosecond Yb:YAG MOPA system

M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, and S. Karsch
Opt. Express 16(6) 3674-3679 (2008)

Amplification characteristics of a cryogenic Yb3+:YAG total-reflection active-mirror laser

Hiroaki Furuse, Toshimitsu Sakurai, Haik Chosrowjan, Junji Kawanaka, Noriaki Miyanaga, Masayuki Fujita, Shinya Ishii, and Yasukazu Izawa
Appl. Opt. 53(9) 1964-1969 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  2. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  3. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express 20(28), 29531–29539 (2012).
    [Crossref] [PubMed]
  4. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett. 37(12), 2175–2177 (2012).
    [Crossref] [PubMed]
  5. T. Gonçalvès-Novo, D. Albach, B. Vincent, M. Arzakantsyan, and J.-C. Chanteloup, “14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain,” Opt. Express 21(1), 855–866 (2013).
    [Crossref] [PubMed]
  6. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
    [Crossref] [PubMed]
  7. Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
    [Crossref]
  8. H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
    [Crossref] [PubMed]
  9. J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
    [Crossref]
  10. H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express 20(19), 21739–21748 (2012).
    [Crossref] [PubMed]
  11. H. Furuse, T. Sakurai, H. Chosrowjan, J. Kawanaka, N. Miyanaga, M. Fujita, S. Ishii, and Y. Izawa, “Amplification characteristics of a cryogenic Yb³⁺:YAG total-reflection active-mirror laser,” Appl. Opt. 53(9), 1964–1969 (2014).
    [Crossref] [PubMed]
  12. H. Furuse and J. Kawanaka, “1 J, 100 Hz GENBU–Front End Laser System with Multi–TRAMs,” The 7nd High Energy Class Diode Pumped Solid-State Laser workshop (HEC-DPSSL), Livermore, USA, Sept. 12–14, (2012).

2014 (1)

2013 (1)

2012 (4)

2011 (2)

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

2007 (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Albach, D.

Arzakantsyan, M.

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Banerjee, S.

Chanteloup, J.-C.

Chosrowjan, H.

Collier, J. L.

Ertel, K.

Fujita, M.

Furuse, H.

Gonçalvès-Novo, T.

Hernandez-Gomez, C.

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Imasaki, K.

Ishii, S.

Iwamoto, A.

Izawa, Y.

Kan, H.

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

Kawanaka, J.

H. Furuse, T. Sakurai, H. Chosrowjan, J. Kawanaka, N. Miyanaga, M. Fujita, S. Ishii, and Y. Izawa, “Amplification characteristics of a cryogenic Yb³⁺:YAG total-reflection active-mirror laser,” Appl. Opt. 53(9), 1964–1969 (2014).
[Crossref] [PubMed]

R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express 20(28), 29531–29539 (2012).
[Crossref] [PubMed]

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

H. Furuse, J. Kawanaka, N. Miyanaga, H. Chosrowjan, M. Fujita, K. Takeshita, and Y. Izawa, “Output characteristics of high power cryogenic Yb:YAG TRAM laser oscillator,” Opt. Express 20(19), 21739–21748 (2012).
[Crossref] [PubMed]

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

H. Furuse, J. Kawanaka, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, K. Takeshita, S. Ishii, and Y. Izawa, “Zig-zag active-mirror laser with cryogenic Yb3+:YAG/YAG composite ceramics,” Opt. Express 19(3), 2448–2455 (2011).
[Crossref] [PubMed]

H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
[Crossref] [PubMed]

Kawashima, T.

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

Loeser, M.

Mason, P. D.

Miyanaga, N.

Nakanishi, T.

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Norimatsu, T.

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Phillips, P. J.

Saiki, T.

Sakurai, T.

Siebold, M.

Taira, T.

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Takeshita, K.

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

Vincent, B.

Yanagitani, T.

Yasuhara, R.

R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express 20(28), 29531–29539 (2012).
[Crossref] [PubMed]

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Takeuchi, J. Kawanaka, A. Yoshida, R. Yasuhara, T. Kawashima, H. Kan, and N. Miyanaga, “Sub-kHz cryogenic Yb:YAG regenerative amplifier by using a total-reflection active mirror,” Appl. Phys. B 104(1), 29–32 (2011).
[Crossref]

IEEE Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (Amst) (1)

J. Kawanaka, Y. Takeuchi, H. Furuse, T. Nakanishi, A. Yoshida, T. Norimatsu, T. Kawashima, and H. Kan, “Total-reflection active-mirror amplifier for high pulse energy and high average power by using a composite ceramic,” Opt. Mater. (Amst) 34(6), 977–980 (2012).
[Crossref]

Other (1)

H. Furuse and J. Kawanaka, “1 J, 100 Hz GENBU–Front End Laser System with Multi–TRAMs,” The 7nd High Energy Class Diode Pumped Solid-State Laser workshop (HEC-DPSSL), Livermore, USA, Sept. 12–14, (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic (a) and photograph (b) of a YAG/Yb:YAG ceramic composite for a multi-TRAM.
Fig. 2
Fig. 2 System configuration of the laser amplifier system for nanosecond pulses.
Fig. 3
Fig. 3 Schematic layout of the multi-TRAM multi-pass amplifier pumped by two fiber-coupled laser diode modules (LD1 and LD2); the components labeled DBS are dichroic beam splitters.
Fig. 4
Fig. 4 Schematic side view of the beam propagation in the multi-TRAM multi-pass amplifier; the numbers indicate the sequence of passes.
Fig. 5
Fig. 5 Small-signal gain of the multi-TRAM after (a) a single pass and (b) four passes with relay imaging.
Fig. 6
Fig. 6 Output pulse energy after four passes through the multi-TRAM amplifier.
Fig. 7
Fig. 7 Output profile of a beam relay-imaged from the gain medium at a peak pump power of 1.3 kW.

Metrics