Abstract

Ca8MgLa(PO4)7:Eu2+, Mn2+ phosphors were prepared by solid-state reaction method, and their luminescence properties were studied. The optical bandgap of the Ca8MgLa(PO4)7 host was determined to be about 5.34 eV experimentally. For Eu2+ single-doped samples, broad yellow emission bands were found from 400 to 800 nm, derived from various Eu2+ emission centers in different Ca2+ sites. The corresponding excitation spectra exhibit strong and broad absorption in near ultraviolet region with a red-shift depending on the monitoring wavelengths. For Eu2+-Mn2+ codoped samples, extremely efficient energy transfer from Eu2+ to Mn2+ was found, and tunable emission was realized with the emitting light color ranging from yellow to red. In sum, the investigation results of Ca8MgLa(PO4)7:Eu2+, Mn2+ phosphors indicate their promising applications in white LEDs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Investigations on the luminescence of Ba2Mg(PO4)2:Eu2+,Mn2+ phosphors for LEDs

Jia Zhang, Baowei Ji, and Zhenghe Hua
Opt. Mater. Express 6(11) 3470-3475 (2016)

Single-phase tunable white-light-emitting Sr3 La(PO4)3 : Eu2+, Mn2+ phosphor for white LEDs

Zhijun Wang, Shuqin Lou, Panlai Li, and Zhenggang Lian
Appl. Opt. 56(4) 1167-1172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Yadav, C. P. Joshi, and S. V. Moharil, “Two phosphor converted white LED with improved CRI,” J. Lumin. 136, 1–4 (2013).
    [Crossref]
  2. M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
    [Crossref] [PubMed]
  3. Y. Shi, Y. Wang, Y. Wen, Z. Zhao, B. Liu, and Z. Yang, “Tunable luminescence Y₃Al₅O₁₂:0.06Ce³⁺, xMn²⁺ phosphors with different charge compensators for warm white light emitting diodes,” Opt. Express 20(19), 21656–21664 (2012).
    [Crossref] [PubMed]
  4. K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED,” J. Lumin. 131(5), 931–937 (2011).
    [Crossref]
  5. H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
    [Crossref]
  6. J. Park, C. K. Lee, and Y. J. Kim, “Crystal structure and variation of luminescence properties of (Ba,Ca)Si7N10:Eu2+ as a function of the Eu and Ca concentration,” Opt. Mater. Express 4(6), 1257–1266 (2014).
    [Crossref]
  7. A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
    [Crossref]
  8. Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
    [Crossref]
  9. S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
    [Crossref]
  10. M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
    [Crossref]
  11. B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2 I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem. 10(3), 232–248 (1974).
    [Crossref]
  12. Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
    [Crossref]
  13. S. C. Gedama, S. J. Dhobleb, and S. V. Moharil, “Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M=Dy3+ or Mn2+) new phosphors,” J. Lumin. 121(2), 450–455 (2006).
    [Crossref]
  14. N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys. 31(1), 2786–2790 (1992).
    [Crossref]
  15. P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
    [Crossref]

2014 (2)

J. Park, C. K. Lee, and Y. J. Kim, “Crystal structure and variation of luminescence properties of (Ba,Ca)Si7N10:Eu2+ as a function of the Eu and Ca concentration,” Opt. Mater. Express 4(6), 1257–1266 (2014).
[Crossref]

Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
[Crossref]

2013 (2)

P. J. Yadav, C. P. Joshi, and S. V. Moharil, “Two phosphor converted white LED with improved CRI,” J. Lumin. 136, 1–4 (2013).
[Crossref]

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

2012 (2)

Y. Shi, Y. Wang, Y. Wen, Z. Zhao, B. Liu, and Z. Yang, “Tunable luminescence Y₃Al₅O₁₂:0.06Ce³⁺, xMn²⁺ phosphors with different charge compensators for warm white light emitting diodes,” Opt. Express 20(19), 21656–21664 (2012).
[Crossref] [PubMed]

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

2011 (1)

K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED,” J. Lumin. 131(5), 931–937 (2011).
[Crossref]

2007 (2)

A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
[Crossref]

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

2006 (1)

S. C. Gedama, S. J. Dhobleb, and S. V. Moharil, “Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M=Dy3+ or Mn2+) new phosphors,” J. Lumin. 121(2), 450–455 (2006).
[Crossref]

2003 (2)

M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
[Crossref]

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

1999 (1)

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

1992 (1)

N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys. 31(1), 2786–2790 (1992).
[Crossref]

1974 (1)

B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2 I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem. 10(3), 232–248 (1974).
[Crossref]

Bae, H. S.

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

Brown, W. E.

B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2 I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem. 10(3), 232–248 (1974).
[Crossref]

Clarke, D. R.

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

Dhoble, S. J.

K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED,” J. Lumin. 131(5), 931–937 (2011).
[Crossref]

Dhobleb, S. J.

S. C. Gedama, S. J. Dhobleb, and S. V. Moharil, “Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M=Dy3+ or Mn2+) new phosphors,” J. Lumin. 121(2), 450–455 (2006).
[Crossref]

Dickens, B.

B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2 I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem. 10(3), 232–248 (1974).
[Crossref]

Fouassier, C.

N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys. 31(1), 2786–2790 (1992).
[Crossref]

Gedama, S. C.

S. C. Gedama, S. J. Dhobleb, and S. V. Moharil, “Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M=Dy3+ or Mn2+) new phosphors,” J. Lumin. 121(2), 450–455 (2006).
[Crossref]

Guo, N.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Guo, Q.

Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
[Crossref]

Hong, K. S.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Hoshikawa, A.

M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
[Crossref]

Hur, S.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Jia, Y.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Jiao, M.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Jose, G.

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Joshi, C. P.

P. J. Yadav, C. P. Joshi, and S. V. Moharil, “Two phosphor converted white LED with improved CRI,” J. Lumin. 136, 1–4 (2013).
[Crossref]

Kamiyama, T.

M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
[Crossref]

Kim, C. H.

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

Kim, D.-W.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Kim, Y. J.

Kim, Y.-I.

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

Kumar, A.

K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED,” J. Lumin. 131(5), 931–937 (2011).
[Crossref]

Lazoryak, B. I.

A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
[Crossref]

Lee, C. K.

Li, P.

Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
[Crossref]

Limarga, A. M.

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

Liu, B.

Lü, W.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Lv, W.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Moharil, S. V.

P. J. Yadav, C. P. Joshi, and S. V. Moharil, “Two phosphor converted white LED with improved CRI,” J. Lumin. 136, 1–4 (2013).
[Crossref]

S. C. Gedama, S. J. Dhobleb, and S. V. Moharil, “Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M=Dy3+ or Mn2+) new phosphors,” J. Lumin. 121(2), 450–455 (2006).
[Crossref]

Page, K.

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

Park, C. H.

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

Park, I. J.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Park, J.

Park, S. J.

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

Paulose, P. I.

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Pyun, C. H.

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

Roh, H.-S.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Ruelle, N.

N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys. 31(1), 2786–2790 (1992).
[Crossref]

Rusakov, D. A.

A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
[Crossref]

Sakai, A.

M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
[Crossref]

Schroeder, L. W.

B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2 I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem. 10(3), 232–248 (1974).
[Crossref]

Seshadri, R.

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

Shao, B.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Shi, Y.

Shinde, K. N.

K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED,” J. Lumin. 131(5), 931–937 (2011).
[Crossref]

Song, H. J.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Stefanovich, S. Yu.

A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
[Crossref]

Teterskii, A. V.

A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
[Crossref]

Thi, M. P.

N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys. 31(1), 2786–2790 (1992).
[Crossref]

Thomasa, V.

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Unnikrishnan, N. V.

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Wang, Y.

Wang, Z.

Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
[Crossref]

Warrier, M. K. R.

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

Wen, Y.

Yadav, P. J.

P. J. Yadav, C. P. Joshi, and S. V. Moharil, “Two phosphor converted white LED with improved CRI,” J. Lumin. 136, 1–4 (2013).
[Crossref]

Yang, Z.

Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
[Crossref]

Y. Shi, Y. Wang, Y. Wen, Z. Zhao, B. Liu, and Z. Yang, “Tunable luminescence Y₃Al₅O₁₂:0.06Ce³⁺, xMn²⁺ phosphors with different charge compensators for warm white light emitting diodes,” Opt. Express 20(19), 21656–21664 (2012).
[Crossref] [PubMed]

Yashima, M.

M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
[Crossref]

Yim, D. K.

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

You, H.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Yu, B. Y.

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

Zhao, Q.

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

Zhao, Z.

Inorg. Chem. (1)

M. Jiao, N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao, B. Shao, and H. You, “Tunable Blue-Green-Emitting Ba3LaNa(PO4)3F:Eu2+,Tb3+ Phosphor with Energy Transfer for Near-UV White LEDs,” Inorg. Chem. 52(18), 10340–10346 (2013).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

S. J. Park, C. H. Park, B. Y. Yu, H. S. Bae, C. H. Kim, and C. H. Pyun, “Structure and Luminescence of SrY2O4:Eu,” J. Electrochem. Soc. 146(10), 3903–3906 (1999).
[Crossref]

J. Lumin. (3)

S. C. Gedama, S. J. Dhobleb, and S. V. Moharil, “Synthesis and effect of Ce3+ co-doping on photoluminescence characteristics of KZnSO4Cl: M (M=Dy3+ or Mn2+) new phosphors,” J. Lumin. 121(2), 450–455 (2006).
[Crossref]

K. N. Shinde, S. J. Dhoble, and A. Kumar, “Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED,” J. Lumin. 131(5), 931–937 (2011).
[Crossref]

P. J. Yadav, C. P. Joshi, and S. V. Moharil, “Two phosphor converted white LED with improved CRI,” J. Lumin. 136, 1–4 (2013).
[Crossref]

J. Phys. Chem. Solids (1)

P. I. Paulose, G. Jose, V. Thomasa, N. V. Unnikrishnan, and M. K. R. Warrier, “Sensitized fluorescence of Ce3+/Mn2+ system in phosphate glass,” J. Phys. Chem. Solids 64(5), 841–846 (2003).
[Crossref]

J. Solid State Chem. (2)

M. Yashima, A. Sakai, T. Kamiyama, and A. Hoshikawa, “Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction,” J. Solid State Chem. 175(2), 272–277 (2003).
[Crossref]

B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2 I. The Crystal Structure of Pure β-Ca3(PO4)2,” J. Solid State Chem. 10(3), 232–248 (1974).
[Crossref]

Jpn. J. Appl. Phys. (1)

N. Ruelle, M. P. Thi, and C. Fouassier, “Cathodoluminescent properties and energy transfer in red calcium sulfide phosphors (CaS:Eu,Mn),” Jpn. J. Appl. Phys. 31(1), 2786–2790 (1992).
[Crossref]

Mater. Lett. (1)

H.-S. Roh, S. Hur, H. J. Song, I. J. Park, D. K. Yim, D.-W. Kim, and K. S. Hong, “Luminescence properties of Ca5(PO4)2SiO4:Eu2+ green phosphor for near UV-based white LED,” Mater. Lett. 70, 37–39 (2012).
[Crossref]

Mater. Res. Bull. (1)

Z. Wang, P. Li, Q. Guo, and Z. Yang, “A single-phased warm white-light-emitting phosphorBaMg2(PO4)2:Eu2+, Mn2+, Tb3+ for white light emitting diodes,” Mater. Res. Bull. 52, 30–36 (2014).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

Y.-I. Kim, K. Page, A. M. Limarga, D. R. Clarke, and R. Seshadri, “Evolution of local structures in polycrystalline Zn1−xMgxO (0 ≤ x ≤ 0.15) studied by Raman spectroscopy and synchrotron x-ray pair-distribution-function analysis,” Phys. Rev. B 76(11), 115204 (2007).
[Crossref]

Russ. J. Inorg. Chem. (1)

A. V. Teterskii, S. Yu. Stefanovich, B. I. Lazoryak, and D. A. Rusakov, “Whitlockite Solid Solutions Ca9–xMxR(PO4)7 (x = 1, 1.5; M = Mg, Zn, Cd; R = Ln, Y) with Antiferroelectric Properties,” Russ. J. Inorg. Chem. 52(3), 308–314 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 XRD patterns of CMLP:xEu2+, yMn2+.
Fig. 2
Fig. 2 (a) DRS of CMLP:xEu2+, yMn2+, inset shows the absorption spectrum of CMLP as calculated by the K-M formula; (b) normalized excitation and emission spectra of CMLP.
Fig. 3
Fig. 3 Emission spectra of CMLP:xEu2+.
Fig. 4
Fig. 4 Normalized excitation (a) and emission (b) spectra of CMLP:0.005Eu2+.
Fig. 5
Fig. 5 (a) Emission spectra of CMLP:xEu2+, yMn2+, inset shows the Mn2+ emission intensity as a function of Mn2+ concentration; (b) decay curves of CMLP:0.005Eu2+, yMn2+, inset shows the ET efficiency as a function of Mn2+ concentration.
Fig. 6
Fig. 6 CIE chromaticity diagram for CMLP:xEu2+, yMn2+ (Point 1 for x = 0.005, y = 0; Point 2 for x = 0.005, y = 0.1; Point 3 for x = 0.005, y = 0.3; Point 4 for x = 0.005, y = 0.5; Point 5 for x = 0.005, y = 0.7; Point 6 for x = 0.005, y = 0.9; Point 7 for x = 0.005, y = 1.0; Point 8 for x = 0, y = 0.5), inset shows the digital photographs of CMLP:0.005Eu2+ (a) and CMLP:0.005Eu2+, 0.9Mn2+ (b) under 365 nm UV lamp irradiation.

Metrics