Abstract

The production of 3D scaffolds with well-controlled architecture at the micrometer-scale is a fundamental issue for the advancement of tissue engineering towards applications in health care. Stereolithography is a highly versatile and accurate technique to fabricate 3D scaffolds with controlled architectures. Here, a scalable stereolithography method combining mask projection with excimer laser is reported. Its capability is showcased by a variety of mm-sized 3D biodegradable scaffolds patterned with a spatial resolution well-suited for tissue engineering applications. The presented method offers a concrete possibility to scale-up stereolithography-based production of 3D scaffolds to be used in regenerative medicine with potentially high-impact on health care.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator

Shaun D. Gittard, Alexander Nguyen, Kotaro Obata, Anastasia Koroleva, Roger J. Narayan, and Boris N. Chichkov
Biomed. Opt. Express 2(11) 3167-3178 (2011)

Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach

Lawrence P. Cunningham, Matthew P. Veilleux, and Paul J. Campagnola
Opt. Express 14(19) 8613-8621 (2006)

Three dimensional live cell lithography

Anna Linnenberger, Martha I. Bodine, Callie Fiedler, Justine J. Roberts, Stacey C. Skaalure, Joseph P. Quinn, Stephanie J. Bryant, Michael Cole, and Robert R. McLeod
Opt. Express 21(8) 10269-10277 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Langer and J. P. Vacanti, “Tissue engineering,” Science 260, 920–926 (1993).
    [Crossref] [PubMed]
  2. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature Mater. 4, 518–524 (2005).
    [Crossref]
  3. S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in tissue engineering,” J Mater Sci: Mater Med 25, 845–856 (2014).
  4. M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
    [Crossref]
  5. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31, 6121–6130 (2010).
    [Crossref] [PubMed]
  6. A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3-D scaffolds for cell culture studies,” Macromol. Biosci. 12, 1301–1314 (2012).
    [Crossref] [PubMed]
  7. J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
    [Crossref]
  8. P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).
  9. M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
    [Crossref]
  10. V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
    [Crossref]
  11. D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
    [Crossref] [PubMed]
  12. A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
    [Crossref] [PubMed]
  13. R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
    [Crossref] [PubMed]
  14. A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater. 9, 5989–5996 (2013).
    [Crossref]
  15. L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
    [Crossref]
  16. J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
    [Crossref] [PubMed]
  17. D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng. 19, 115002 (2009).
    [Crossref]
  18. Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
    [Crossref]
  19. A. Schaap and Y. Bellouard, “Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass,” Opt. Mat. Express 3, 1428–1437 (2013).
    [Crossref]
  20. A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
    [Crossref]
  21. A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
    [Crossref] [PubMed]
  22. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
    [Crossref]
  23. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
    [Crossref]
  24. J. L. Ifkovits and J. A. Burdick, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Eng. 13, 2369–2385 (2007).
    [Crossref] [PubMed]
  25. F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
    [Crossref] [PubMed]
  26. C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
    [Crossref] [PubMed]
  27. B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
    [Crossref] [PubMed]
  28. S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
    [Crossref] [PubMed]
  29. S. Wang and L. Cai, “Polymers for fabricating nerve conduits,” Int. J. Polym. Sci. 2010, 138686 (2010).
    [Crossref]
  30. K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
    [Crossref] [PubMed]
  31. H.-W. Kang, J. H. Park, and D.-W. Cho, “Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity,“ Tissue Engineering 18, 719–729 (2012).
    [Crossref] [PubMed]
  32. J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
    [Crossref] [PubMed]
  33. S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
    [Crossref] [PubMed]
  34. S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
    [Crossref]
  35. S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
    [Crossref]
  36. S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
    [Crossref]
  37. F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
    [Crossref]
  38. S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
    [Crossref]
  39. J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
    [Crossref]
  40. W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
    [Crossref]
  41. S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
    [Crossref] [PubMed]
  42. M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
    [Crossref]
  43. L. A. Kinard, F. K. Kasper, and A. G. Mikos, “Synthesis of oligo(poly(ethylene glycol) fumarate),” Nature Protocols 7, 1219–1227 (2012).
    [Crossref] [PubMed]
  44. K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
    [Crossref] [PubMed]
  45. J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
    [Crossref]
  46. C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
    [Crossref] [PubMed]
  47. B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
    [Crossref] [PubMed]
  48. F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
    [Crossref]

2014 (3)

S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in tissue engineering,” J Mater Sci: Mater Med 25, 845–856 (2014).

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

2013 (9)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
[Crossref]

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
[Crossref]

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater. 9, 5989–5996 (2013).
[Crossref]

Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
[Crossref]

A. Schaap and Y. Bellouard, “Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass,” Opt. Mat. Express 3, 1428–1437 (2013).
[Crossref]

2012 (12)

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3-D scaffolds for cell culture studies,” Macromol. Biosci. 12, 1301–1314 (2012).
[Crossref] [PubMed]

H.-W. Kang, J. H. Park, and D.-W. Cho, “Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity,“ Tissue Engineering 18, 719–729 (2012).
[Crossref] [PubMed]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

L. A. Kinard, F. K. Kasper, and A. G. Mikos, “Synthesis of oligo(poly(ethylene glycol) fumarate),” Nature Protocols 7, 1219–1227 (2012).
[Crossref] [PubMed]

2011 (5)

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

2010 (4)

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31, 6121–6130 (2010).
[Crossref] [PubMed]

S. Wang and L. Cai, “Polymers for fabricating nerve conduits,” Int. J. Polym. Sci. 2010, 138686 (2010).
[Crossref]

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
[Crossref]

2009 (5)

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng. 19, 115002 (2009).
[Crossref]

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
[Crossref] [PubMed]

P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).

2008 (3)

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
[Crossref]

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

2007 (3)

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
[Crossref] [PubMed]

J. L. Ifkovits and J. A. Burdick, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Eng. 13, 2369–2385 (2007).
[Crossref] [PubMed]

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

2005 (1)

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature Mater. 4, 518–524 (2005).
[Crossref]

2004 (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

1993 (1)

R. Langer and J. P. Vacanti, “Tissue engineering,” Science 260, 920–926 (1993).
[Crossref] [PubMed]

Ambrosio, L.

A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater. 9, 5989–5996 (2013).
[Crossref]

Amsden, B. G.

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
[Crossref] [PubMed]

Anjum, F.

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

Aprile, V.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Athanassiou, A.

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

Bae, H.

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Baldacchini, T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Barenghi, R.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Barone, A. C.

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

Bar-Shir, A.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Bastmeyer, M.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3-D scaffolds for cell culture studies,” Macromol. Biosci. 12, 1301–1314 (2012).
[Crossref] [PubMed]

Baudis, S.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Beke, S.

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Belle, V.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Bellouard, Y.

A. Schaap and Y. Bellouard, “Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass,” Opt. Mat. Express 3, 1428–1437 (2013).
[Crossref]

Bonassar, L. J.

M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
[Crossref]

Brandi, F.

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Bulte, J. W. M.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Burdick, J. A.

J. L. Ifkovits and J. A. Burdick, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Eng. 13, 2369–2385 (2007).
[Crossref] [PubMed]

Busso, M.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Cai, L.

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

S. Wang and L. Cai, “Polymers for fabricating nerve conduits,” Int. J. Polym. Sci. 2010, 138686 (2010).
[Crossref]

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

Camci-Unal, G.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

Caplan, A. I.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Cerullo, G.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Ceseracciu, L.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

Cha, C.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

Chen, B. K.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Chen, S.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
[Crossref]

Chen, Y.-C.

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Chichkov, B.

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

Chichkov, B. N.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

Chieregatti, E.

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

Cho, D.-W.

H.-W. Kang, J. H. Park, and D.-W. Cho, “Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity,“ Tissue Engineering 18, 719–729 (2012).
[Crossref] [PubMed]

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).

Choi, J.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Choi, J.-W.

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

Choi, K.-H.

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

Chung, I.

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

Claeyssens, F.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Cui, M.

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

Currier, B. L.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Dadsetan, M.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Daicho, Y.

Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
[Crossref]

Daly, W.

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

Dean, D.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

Deiwick, A.

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

Diaspro, A.

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

Dong, J.

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

Eaton, S. M.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Farkas, B.

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Farrer, R. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
[Crossref]

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Feijen, J.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31, 6121–6130 (2010).
[Crossref] [PubMed]

F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
[Crossref]

Fisher, J. P.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
[Crossref] [PubMed]

Fotakis, C.

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Fourkas, J. T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Fox, B. C.

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

Gauvin, R.

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Gilad, A. A.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Gill, A.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Gittard, S.

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

Gittard, S. D.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

Goering, P. L.

S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in tissue engineering,” J Mater Sci: Mater Med 25, 845–856 (2014).

Greiner, A. M.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3-D scaffolds for cell culture studies,” Macromol. Biosci. 12, 1301–1314 (2012).
[Crossref] [PubMed]

Grijpma, D. W.

A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater. 9, 5989–5996 (2013).
[Crossref]

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31, 6121–6130 (2010).
[Crossref] [PubMed]

F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
[Crossref]

Gross, L.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Gruetzmacher, J. A.

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

Ha, C.-S.

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

Hagiwara, T.

Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
[Crossref]

Han, L.-H.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
[Crossref]

Hao, F.

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

Haycock, J. W.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

He, S.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

Heller, C.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Hollister, S. J.

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature Mater. 4, 518–524 (2005).
[Crossref]

Hribar, K. C.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

Hyeon, T.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Ifkovits, J. L.

J. L. Ifkovits and J. A. Burdick, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Eng. 13, 2369–2385 (2007).
[Crossref] [PubMed]

Jockenhoevel, S.

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

Juodkazis, S.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
[Crossref]

Kang, H.-W.

H.-W. Kang, J. H. Park, and D.-W. Cho, “Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity,“ Tissue Engineering 18, 719–729 (2012).
[Crossref] [PubMed]

Kang, K. S.

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

Kasper, F. K.

L. A. Kinard, F. K. Kasper, and A. G. Mikos, “Synthesis of oligo(poly(ethylene glycol) fumarate),” Nature Protocols 7, 1219–1227 (2012).
[Crossref] [PubMed]

F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
[Crossref] [PubMed]

Kempen, D. H.

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

Khademhosseini, A.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Kim, J.-Y.

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

Kim, K.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Kim, T.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Kinard, L. A.

L. A. Kinard, F. K. Kasper, and A. G. Mikos, “Synthesis of oligo(poly(ethylene glycol) fumarate),” Nature Protocols 7, 1219–1227 (2012).
[Crossref] [PubMed]

Kirkham, G. R.

M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
[Crossref]

Kling, R.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Knight, A. M.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

Knight, D. K.

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
[Crossref] [PubMed]

Koroleva, A.

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

Korösi, L.

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

LaFratta, C. N.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Laganà, M.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Lan, P. X.

P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).

Langer, R.

R. Langer and J. P. Vacanti, “Tissue engineering,” Science 260, 920–926 (1993).
[Crossref] [PubMed]

Lee, B.-K.

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

Lee, J. W.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).

Lee, K.-W.

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

Lee, S. H.

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

Lee, S.-H.

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

Lennon, D. P.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Lewis, J. L.

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

Liska, R.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Liu, G.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Lu, L.

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

Madigan, N. N.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Malinauskas, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
[Crossref]

Mammoser, N.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Mapili, G.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
[Crossref]

Maruo, S.

Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
[Crossref]

McMahon, M. T.

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

Melchels, F. P. W.

F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
[Crossref]

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31, 6121–6130 (2010).
[Crossref] [PubMed]

Melissinaki, V.

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Menon, C.

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng. 19, 115002 (2009).
[Crossref]

Mikos, A. G.

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

L. A. Kinard, F. K. Kasper, and A. G. Mikos, “Synthesis of oligo(poly(ethylene glycol) fumarate),” Nature Protocols 7, 1219–1227 (2012).
[Crossref] [PubMed]

F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
[Crossref] [PubMed]

Murakami, T.

Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
[Crossref]

Narayan, R. J.

S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in tissue engineering,” J Mater Sci: Mater Med 25, 845–856 (2014).

Naughton, M. J.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Nava, M. M.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Nesbitt, J. J.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Neumeister, A.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Nichol, J. W.

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Nikkhah, M.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

Ortega, I.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Osellame, R.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Ostendorf, A.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Pandit, A.

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

Park, J. H.

H.-W. Kang, J. H. Park, and D.-W. Cho, “Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity,“ Tissue Engineering 18, 719–729 (2012).
[Crossref] [PubMed]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
[Crossref]

Qu, X.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

Raimondi, M. T.

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

Ranella, A.

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Richter, B.

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3-D scaffolds for cell culture studies,” Macromol. Biosci. 12, 1301–1314 (2012).
[Crossref] [PubMed]

Ritman, E. L.

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

Romano, I.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Ronca, A.

A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater. 9, 5989–5996 (2013).
[Crossref]

Rooney, G. E.

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Roy, K.

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
[Crossref]

Runge, M. B.

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

Saleh, B. E. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Sameoto, D.

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng. 19, 115002 (2009).
[Crossref]

Sawkins, M. J.

M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
[Crossref]

Sbrana, F.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

Scaglione, S.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Scarpellini, A.

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

Schaap, A.

A. Schaap and Y. Bellouard, “Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass,” Opt. Mat. Express 3, 1428–1437 (2013).
[Crossref]

Schlie, S.

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

Seol, Y.-J.

P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).

Shakesheff, K. M.

M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
[Crossref]

Shapka, S. N.

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
[Crossref] [PubMed]

Siblani, A.

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

Simha, N. K.

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

Skoog, S. A.

S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in tissue engineering,” J Mater Sci: Mater Med 25, 845–856 (2014).

Soblani, A.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Soman, P.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Sonawane, B.

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

Spinner, R. J.

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

Spitzbart, M.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Stagnaro, P.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

Stampfl, J.

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

Sukarto, A.

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
[Crossref] [PubMed]

Sun, J.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Tanahashi, K.

F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
[Crossref] [PubMed]

Teich, M. C.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

Thompson, P.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Tsushima, H.

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

Vacanti, J. P.

R. Langer and J. P. Vacanti, “Tissue engineering,” Science 260, 920–926 (1993).
[Crossref] [PubMed]

Vamvakaki, M.

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

Vassalli, M.

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

Velders, A. H.

F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
[Crossref]

Wallace, J.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

Wang, H.

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

Wang, K.

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

Wang, M. O.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

Wang, S.

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

S. Wang and L. Cai, “Polymers for fabricating nerve conduits,” Int. J. Polym. Sci. 2010, 138686 (2010).
[Crossref]

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

Wei, C.

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

Welter, J. F.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Wicker, R

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

Windebank, A.

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

Windebank, A. J.

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

Xu, X.

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

Xu, Y.

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

Yao, L.

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

Yaszemski, M. J.

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

Zeugolis, D.

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

Zhang, A. P.

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

Zhu, W.

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

Zorlutuna, P.

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

Acta Biomater. (4)

M. T. Raimondi, S. M. Eaton, M. Laganà, V. Aprile, M. M. Nava, G. Cerullo, and R. Osellame, “Three-dimensional structural niches engineered via two-photon laser polymerization promote stem cell homing,” Acta Biomater. 9, 4579–4584 (2013).
[Crossref]

A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater. 9, 5989–5996 (2013).
[Crossref]

S. Wang, M. J. Yaszemski, A. M. Knight, J. A. Gruetzmacher, A. J. Windebank, and L. Lu, “Photo-crosslinked poly(ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: Material properties and preliminary biological evaluations,” Acta Biomater. 5, 1531–1542 (2009).
[Crossref] [PubMed]

M. B. Runge, H. Wang, R. J. Spinner, A. J. Windebank, and M. J. Yaszemski, “Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties,” Acta Biomater. 8, 133–143 (2012).
[Crossref]

Adv. Mater. (1)

A. P. Zhang, X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. Chen, and S. He, “Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography,” Adv. Mater. 24, 4266–4270 (2012).
[Crossref] [PubMed]

Biofabrication (5)

V. Melissinaki, A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3-D scaffolds for neural tissue engineering applications,” Biofabrication 3, 045005 (2011).
[Crossref]

J. Wallace, M. O. Wang, P. Thompson, M. Busso, V. Belle, N. Mammoser, K. Kim, J. P. Fisher, A. Soblani, Y. Xu, J. F. Welter, D. P. Lennon, J. Sun, A. I. Caplan, and D. Dean, “Validating continuous digital light processing (cDLP) additive manufacturing accuracy and tissue engineering utility of a dye-initiator package,” Biofabrication 6, 015003 (2014).
[Crossref] [PubMed]

C. Wei, L. Cai, B. Sonawane, S. Wang, and J. Dong, “High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers,” Biofabrication 4, 025009 (2012).
[Crossref] [PubMed]

A. Koroleva, A. Gill, I. Ortega, J. W. Haycock, S. Schlie, S. D. Gittard, B. N. Chichkov, and F. Claeyssens, “Two-photon polymerization-generated and micromolding-replicated 3-D scaffolds for peripheral neural tissue engineering applications,” Biofabrication 4, 025005 (2012).
[Crossref]

A. Koroleva, S. Gittard, S. Schlie, A. Deiwick, S. Jockenhoevel, and B. Chichkov, “Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique,” Biofabrication 4, 015001 (2012).
[Crossref] [PubMed]

Biomacromolecules (4)

K.-W. Lee, S. Wang, B. C. Fox, E. L. Ritman, M. J. Yaszemski, and L. Lu, “Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters,“ Biomacromolecules 8, 1077–1084 (2007).
[Crossref] [PubMed]

K. Wang, L. Cai, F. Hao, X. Xu, M. Cui, and S. Wang, “Distinct cell responses to substrates consisting of poly(ε-caprolactone) and poly(propylene fumarate) in the presence or absence of cross-links,” Biomacromolecules 11, 2748–2759 (2010).
[Crossref] [PubMed]

S. Wang, D. H. Kempen, N. K. Simha, J. L. Lewis, A. J. Windebank, M. J. Yaszemski, and L. Lu, “Photo-crosslinked hybrid polymer networks consisting of poly(propylene fumarate) (PPF) and poly(caprolactone fumarate) (PCLF): controlled physical properties and regulated bone and nerve cell responses,” Biomacromolecules 9, 1229–1241 (2008).
[Crossref] [PubMed]

B. G. Amsden, A. Sukarto, D. K. Knight, and S. N. Shapka, “Methacrylated glycol chitosan as a photopolymerizable biomaterial,” Biomacromolecules 8, 3758–3766 (2007).
[Crossref] [PubMed]

Biomater. Sci. (1)

C. Cha, P. Soman, W. Zhu, M. Nikkhah, G. Camci-Unal, S. Chen, and A. Khademhosseini, “Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds,” Biomater. Sci. 2, 703–709 (2014).
[Crossref] [PubMed]

Biomaterials (4)

B. K. Chen, A. M. Knight, N. N. Madigan, L. Gross, M. Dadsetan, J. J. Nesbitt, G. E. Rooney, B. L. Currier, M. J. Yaszemski, R. J. Spinner, and A. J. Windebank, “Comparison of polymer scaffolds in rat spinal cord: a step toward quantitative assessment of combinatorial approaches to spinal cord repair,” Biomaterials 32, 8077–8086 (2011).
[Crossref] [PubMed]

R. Gauvin, Y.-C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3-D projection stereolithography,” Biomaterials 33, 3824–3834 (2012).
[Crossref] [PubMed]

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31, 6121–6130 (2010).
[Crossref] [PubMed]

J. W. Lee, K. S. Kang, S. H. Lee, J.-Y. Kim, B.-K. Lee, and D.-W. Cho, “Bone regeneration using a microstereolithography-produced customized poly(propylene fumarate)/diethyl fumarate photopolymer 3-D scaffold incorporating BMP-2 loaded PLGA microspheres,” Biomaterials 32, 744–752 (2011).
[Crossref]

Int. J. Polym. Sci. (1)

S. Wang and L. Cai, “Polymers for fabricating nerve conduits,” Int. J. Polym. Sci. 2010, 138686 (2010).
[Crossref]

J Mater Sci: Mater Med (1)

S. A. Skoog, P. L. Goering, and R. J. Narayan, “Stereolithography in tissue engineering,” J Mater Sci: Mater Med 25, 845–856 (2014).

J. Control. Release (1)

J. Choi, K. Kim, T. Kim, G. Liu, A. Bar-Shir, T. Hyeon, M. T. McMahon, J. W. M. Bulte, J. P. Fisher, and A. A. Gilad, “Multimodal imaging of sustained drug release from 3-D poly(propylene fumarate) (PPF) scaffolds,” J. Control. Release 156, 239–245 (2011).
[Crossref] [PubMed]

J. Mater. Process. Tech. (1)

J.-W. Choi, R Wicker, S.-H. Lee, K.-H. Choi, C.-S. Ha, and I. Chung, “Fabrication of 3-D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography,” J. Mater. Process. Tech. 209, 5494–5503 (2009).
[Crossref]

J. Mater. Sci.: Mater Med. (1)

P. X. Lan, J. W. Lee, Y.-J. Seol, and D.-W. Cho, “Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification,” J. Mater. Sci.: Mater Med. 20, 271–279 (2009).

J. Micromech. and Microeng. (1)

F. Brandi, F. Anjum, L. Ceseracciu, A. C. Barone, and A. Athanassiou, “Rigid biodegradable photopolymer structures of high resolution using deep-UV laser photocuring,” J. Micromech. and Microeng. 21, 054007 (2011).
[Crossref]

J. Micromech. Microeng. (2)

J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, “Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography,” J. Micromech. Microeng. 18, 125014 (2008).
[Crossref]

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng. 19, 115002 (2009).
[Crossref]

J. Phys. Chem. B (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B 108, 11256–11258 (2004).
[Crossref]

J. R. Soc. Interface (2)

S. Beke, F. Anjum, H. Tsushima, L. Ceseracciu, E. Chieregatti, A. Diaspro, A. Athanassiou, and F. Brandi, “Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds,” J. R. Soc. Interface 9, 3017–3026 (2012).
[Crossref] [PubMed]

W. Daly, L. Yao, D. Zeugolis, A. Windebank, and A. Pandit, “A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery,” J. R. Soc. Interface 9, 202–221 (2012).
[Crossref]

Journal of Manufacturing Science and Engineering (1)

L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” Journal of Manufacturing Science and Engineering 130, 021005 (2008).
[Crossref]

Laser Phys. (1)

S. Beke, F. Anjum, L. Ceseracciu, I. Romano, A. Athanassiou, A. Diaspro, and F. Brandi, “Rapid fabrication of rigid biodegradable scaffolds by excimer laser mask projection technique: a comparison between 248 and 308 nm,” Laser Phys. 23, 035602 (2013).
[Crossref]

Macromol. Biosci. (1)

A. M. Greiner, B. Richter, and M. Bastmeyer, “Micro-engineered 3-D scaffolds for cell culture studies,” Macromol. Biosci. 12, 1301–1314 (2012).
[Crossref] [PubMed]

Macromolecules (1)

F. P. W. Melchels, A. H. Velders, J. Feijen, and D. W. Grijpma, “Photo-cross-linked poly(d,l-lactide)-based networks. Structural characterization by HR-MAS NMR spectroscopy and hydrolytic degradation behavior,” Macromolecules 43, 8570–8579 (2010).
[Crossref]

Mat. Sci. Eng. C (1)

S. Beke, L. Kőrösi, A. Scarpellini, F. Anjum, and F. Brandi, “Titanate nanotube coatings on biodegradable photopolymer scaffolds,” Mat. Sci. Eng. C 33, 2460–2463 (2013).
[Crossref]

Nat. Protoc. (1)

F. K. Kasper, K. Tanahashi, J. P. Fisher, and A. G. Mikos, “Synthesis of poly(propylene fumarate),” Nat. Protoc. 4, 518–525 (2009).
[Crossref] [PubMed]

Nature Mater. (1)

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nature Mater. 4, 518–524 (2005).
[Crossref]

Nature Protocols (1)

L. A. Kinard, F. K. Kasper, and A. G. Mikos, “Synthesis of oligo(poly(ethylene glycol) fumarate),” Nature Protocols 7, 1219–1227 (2012).
[Crossref] [PubMed]

Opt. Mat. Express (2)

Y. Daicho, T. Murakami, T. Hagiwara, and S. Maruo, “Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding,” Opt. Mat. Express 3, 875–883 (2013).
[Crossref]

A. Schaap and Y. Bellouard, “Molding topologically-complex 3D polymer microstructures from femtosecond laser machined glass,” Opt. Mat. Express 3, 1428–1437 (2013).
[Crossref]

Physics Reports (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Physics Reports 533, 1–31 (2013).
[Crossref]

Proc. of SPIE (1)

S. Scaglione, R. Barenghi, S. Beke, L. Ceseracciu, I. Romano, F. Sbrana, P. Stagnaro, F. Brandi, and M. Vassalli, “Characterization of a bioinspired elastin-polypropylene fumarate material for vascular prostheses applications,” Proc. of SPIE 8792, 87920H (2013).
[Crossref]

Recent Pat. Biomed. Eng. (1)

M. J. Sawkins, K. M. Shakesheff, L. J. Bonassar, and G. R. Kirkham, “3D cell and scaffold patterning strategies in tissue engineering,” Recent Pat. Biomed. Eng. 6, 3–21 (2013).
[Crossref]

Science (1)

R. Langer and J. P. Vacanti, “Tissue engineering,” Science 260, 920–926 (1993).
[Crossref] [PubMed]

Tissue Eng. (1)

J. L. Ifkovits and J. A. Burdick, “Review: photopolymerizable and degradable biomaterials for tissue engineering applications,” Tissue Eng. 13, 2369–2385 (2007).
[Crossref] [PubMed]

Tissue Engineering (1)

H.-W. Kang, J. H. Park, and D.-W. Cho, “Development of an indirect stereolithography technology for scaffold fabrication with a wide range of biomaterial selectivity,“ Tissue Engineering 18, 719–729 (2012).
[Crossref] [PubMed]

Virtual. Phys. Prototyp. (1)

D. Dean, J. Wallace, A. Siblani, M. O. Wang, K. Kim, A. G. Mikos, and J. P. Fisher, “Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual. Phys. Prototyp. 7, 13–24 (2012).
[Crossref] [PubMed]

Other (1)

S. Beke, R. Barenghi, B. Farkas, I. Romano, L. Kőrösi, S. Scaglione, and F. Brandi, “Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings,” Mat. Sci. Eng. C, DOI: .
[Crossref]

Supplementary Material (1)

» Media 1: MP4 (14272 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the MPExSL system; (b) photo of the system. Inset in (a) shows the curing depth in PPF:DEF (7:3) as a function of the laser pulse dose using a fluence of 20 mJ/cm2, and the continuous lines are the results of a logarithmic fit on the data points.
Fig. 2
Fig. 2 Schematic description of the MPExSL process ( Media 1): a) conceptual digital rendering of the shape of the scaffold to be fabricated (the reported scale bar is indicative of the overall exposed dimension achievable with the present MPExSL set-up); b) internal layered micro-structure with a porosity determined by the applied mask as shown in the inset (the reported scale bar is indicative of the achievable resolution with the present MPExSL set-up); c) further system flexibility achieved by the mask iris opening, as shown in the inset, and movement of XY stages, as highlighted by the arrow.
Fig. 3
Fig. 3 (a) woodpile scaffolds; top (b) and side (c) views of the scaffold in (a).
Fig. 4
Fig. 4 (a) a 3 mm-high, 5 mm external diameter cylindrical scaffolds with conduits of 600 μm; (b) multi-conduit scaffold with modulated external diameter and 50 μm conduit diameter (shown in inset); (c) photo of the two multi-conduit scaffolds.
Fig. 5
Fig. 5 (a) scaffold obtained with a star-shaped mask; (b) scaffold obtained with the star-shaped mask using multiple exposures; (c) scaffold obtained with a square-shaped mask using multiple exposures.

Metrics