Abstract

We have realized highly transparent Yb:fluorapatite (FAP) ceramics by use of slip casting under rotational magnetic field, even though the main crystal axis become a hard magnetization axis due to the enhancement of magnetic anisotropy by the total angular momentum of 4f electrons in doped rare-earth ions. We confirmed that our Yb:FAP ceramics reached to have a laser-grade quality: it did not interrupt laser oscillation when it was inserted into a lasing cavity. We also evaluate the absorption and the round-trip loss including Fresnel loss of our Yb:FAP ceramics, which were 3.7 cm−1 at 902 nm and 0.26 (11.5% by a single pass) at 1064 nm, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orientation control of micro-domains in anisotropic laser ceramics

Yoichi Sato, Jun Akiyama, and Takunori Taira
Opt. Mater. Express 3(6) 829-841 (2013)

Nanostructured transparent ceramics with an anisotropic crystalline structure

Yiquan Wu
Opt. Mater. Express 4(10) 2026-2031 (2014)

Domain-controlled laser ceramics toward Giant Micro-photonics [Invited]

Takunori Taira
Opt. Mater. Express 1(5) 1040-1050 (2011)

References

  • View by:
  • |
  • |
  • |

  1. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
    [Crossref]
  2. S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5(8), 153–154 (1964).
    [Crossref]
  3. T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics,” Opt. Mater. Express 1(5), 1040–1050 (2011).
    [Crossref]
  4. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
    [Crossref]
  5. J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).
  6. V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
    [Crossref]
  7. J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
    [Crossref]
  8. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
    [Crossref]
  9. Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
    [Crossref]
  10. S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” Proceedings of Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, CThA1, Baltimore, MA, USA (2009).
  11. J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
    [Crossref]
  12. T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
    [Crossref]
  13. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO(4) microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
    [Crossref] [PubMed]
  14. S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
    [Crossref]
  15. J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
    [Crossref] [PubMed]
  16. Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi 10(6c), 896–902 (2013).
    [Crossref]
  17. Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domain in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
    [Crossref]
  18. S. Chen, Y. Wu, and Y. Yang, “Spark plasma sintering of hexagonal structure Yb3+-doped Sr5 (PO4)3F transparent ceramics,” J. Am. Ceram. Soc. 96(6), 1694–1697 (2013).
    [Crossref]
  19. Y. Sato and T. Taira, “Spectroscopic properties of neodymium doped yttrium orthovanadate single crystals with High resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
    [Crossref]
  20. H. Kusunose, “Description of multipole in f-electron systems,” J. Phys. Soc. Jpn. 77(6), 064710 (2008).
    [Crossref]
  21. T. Kimura, “Study on the effect of magnetic fields on polymeric materials and its application,” Polym. J. 35(11), 823–843 (2003).
    [Crossref]
  22. J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
    [Crossref]
  23. R. W. G. Wyckoff, Crystal Structures 2nd ed. Vol. 3 (John Wily & Sons, Inc., 1965) p. 228.
  24. F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
    [Crossref]
  25. S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
    [Crossref]

2013 (3)

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi 10(6c), 896–902 (2013).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domain in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
[Crossref]

S. Chen, Y. Wu, and Y. Yang, “Spark plasma sintering of hexagonal structure Yb3+-doped Sr5 (PO4)3F transparent ceramics,” J. Am. Ceram. Soc. 96(6), 1694–1697 (2013).
[Crossref]

2011 (2)

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics,” Opt. Mater. Express 1(5), 1040–1050 (2011).
[Crossref]

2010 (1)

2008 (1)

H. Kusunose, “Description of multipole in f-electron systems,” J. Phys. Soc. Jpn. 77(6), 064710 (2008).
[Crossref]

2007 (3)

J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
[Crossref]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

2005 (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

2003 (1)

T. Kimura, “Study on the effect of magnetic fields on polymeric materials and its application,” Polym. J. 35(11), 823–843 (2003).
[Crossref]

2002 (1)

Y. Sato and T. Taira, “Spectroscopic properties of neodymium doped yttrium orthovanadate single crystals with High resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[Crossref]

2001 (1)

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

2000 (3)

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

1995 (1)

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

1994 (2)

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

1991 (1)

1964 (1)

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5(8), 153–154 (1964).
[Crossref]

1959 (1)

F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
[Crossref]

Akchurin, M. Sh.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Akiyama, J.

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi 10(6c), 896–902 (2013).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domain in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
[Crossref]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
[Crossref] [PubMed]

J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
[Crossref]

Asai, S.

J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
[Crossref]

Asano, H.

J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
[Crossref]

Chai, B. H. T.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

Chen, S.

S. Chen, Y. Wu, and Y. Yang, “Spark plasma sintering of hexagonal structure Yb3+-doped Sr5 (PO4)3F transparent ceramics,” J. Am. Ceram. Soc. 96(6), 1694–1697 (2013).
[Crossref]

Deloach, L. D.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

Gainutdinov, R. V.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Hatch, S. E.

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5(8), 153–154 (1964).
[Crossref]

Ikesue, A.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Iwai, K.

J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
[Crossref]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kaminskii, A. A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Kimura, T.

T. Kimura, “Study on the effect of magnetic fields on polymeric materials and its application,” Polym. J. 35(11), 823–843 (2003).
[Crossref]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Kobayashi, T.

Krupke, W. F.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

Kudryashov, A.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Kurimura, S.

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Kusunose, H.

H. Kusunose, “Description of multipole in f-electron systems,” J. Phys. Soc. Jpn. 77(6), 064710 (2008).
[Crossref]

Kway, W. L.

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

Lotgering, F. K.

F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
[Crossref]

Loutts, G.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

Lu, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Lupei, A.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

Lupei, V.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

Mukai, A.

Nozawa, Y.

Parsons, W. F.

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5(8), 153–154 (1964).
[Crossref]

Pavel, N.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

Payne, S. A.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

Prabhu, M.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Saikawa, J.

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

Sato, Y.

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi 10(6c), 896–902 (2013).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domain in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
[Crossref]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
[Crossref] [PubMed]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Y. Sato and T. Taira, “Spectroscopic properties of neodymium doped yttrium orthovanadate single crystals with High resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

Shirakawa, A.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Shoji, I.

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

Smith, L. K.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

Song, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Taira, T.

Y. Sato, J. Akiyama, and T. Taira, “Orientation control of micro-domain in anisotropic laser ceramics,” Opt. Mater. Express 3(6), 829–841 (2013).
[Crossref]

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi 10(6c), 896–902 (2013).
[Crossref]

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

T. Taira, “Domain-controlled laser ceramics toward Giant Micro-photonics,” Opt. Mater. Express 1(5), 1040–1050 (2011).
[Crossref]

J. Akiyama, Y. Sato, and T. Taira, “Laser ceramics with rare-earth-doped anisotropic materials,” Opt. Lett. 35(21), 3598–3600 (2010).
[Crossref] [PubMed]

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Y. Sato and T. Taira, “Spectroscopic properties of neodymium doped yttrium orthovanadate single crystals with High resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[Crossref]

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO(4) microchip lasers,” Opt. Lett. 16(24), 1955–1957 (1991).
[Crossref] [PubMed]

Takaichi, K.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

Tassano, J. B.

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

Ueda, K.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Weagley, R. J.

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5(8), 153–154 (1964).
[Crossref]

Wu, Y.

S. Chen, Y. Wu, and Y. Yang, “Spark plasma sintering of hexagonal structure Yb3+-doped Sr5 (PO4)3F transparent ceramics,” J. Am. Ceram. Soc. 96(6), 1694–1697 (2013).
[Crossref]

Xu, J.

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Yagi, H.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Yanagitani, T.

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Yang, Y.

S. Chen, Y. Wu, and Y. Yang, “Spark plasma sintering of hexagonal structure Yb3+-doped Sr5 (PO4)3F transparent ceramics,” J. Am. Ceram. Soc. 96(6), 1694–1697 (2013).
[Crossref]

Yoshida, K.

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

Appl. Phys. Express (1)

J. Akiyama, Y. Sato, and T. Taira, “Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics,” Appl. Phys. Express 4(2), 022703 (2011).
[Crossref]

Appl. Phys. Lett. (3)

V. Lupei, A. Lupei, N. Pavel, T. Taira, I. Shoji, and A. Ikesue, “Laser emission under resonant pump in the emitting level of concentrated Nd:YAG ceramics,” Appl. Phys. Lett. 79(5), 590–592 (2001).
[Crossref]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, and K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77(7), 939–941 (2000).
[Crossref]

S. E. Hatch, W. F. Parsons, and R. J. Weagley, “Hot-pressed polycrystalline CaF2:Dy2+ laser,” Appl. Phys. Lett. 5(8), 153–154 (1964).
[Crossref]

Crystallogr. Rep. (1)

A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda, “Microhardness and fracture toughness of Y2O3- and Y3Al5O12-based nanocrystalline laser ceramics,” Crystallogr. Rep. 50(5), 869–873 (2005).
[Crossref]

IEEE J. Quantum Electron. (1)

S. A. Payne, L. K. Smith, L. D. Deloach, W. L. Kway, J. B. Tassano, and W. F. Krupke, “Laser, optical, and thermomechanical properties of Yb-doped fluoroapatite,” IEEE J. Quantum Electron. 30(1), 170–179 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Taira, “RE3+-ion-doped YAG ceramic lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 798–809 (2007).
[Crossref]

J. Am. Ceram. Soc. (2)

S. Chen, Y. Wu, and Y. Yang, “Spark plasma sintering of hexagonal structure Yb3+-doped Sr5 (PO4)3F transparent ceramics,” J. Am. Ceram. Soc. 96(6), 1694–1697 (2013).
[Crossref]

A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and optical properties of high performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78(4), 1033–1040 (1995).
[Crossref]

J. Appl. Phys. (1)

S. A. Payne, L. D. Deloach, L. K. Smith, W. L. Kway, J. B. Tassano, W. F. Krupke, B. H. T. Chai, and G. Loutts, “Ytterbium-doped apatite structure crystals-a new class of laser materials,” J. Appl. Phys. 76(1), 497–503 (1994).
[Crossref]

J. Inorg. Nucl. Chem. (1)

F. K. Lotgering, “Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-II,” J. Inorg. Nucl. Chem. 9(2), 113–123 (1959).
[Crossref]

J. Jpn. Inst. Metals (1)

J. Akiyama, H. Asano, K. Iwai, and S. Asai, “Analysis of uni-axial alignment behavior of nonmagnetic materials under static magnetic field with sample rotation,” J. Jpn. Inst. Metals 71(1), 108–112 (2007).
[Crossref]

J. Phys. Soc. Jpn. (1)

H. Kusunose, “Description of multipole in f-electron systems,” J. Phys. Soc. Jpn. 77(6), 064710 (2008).
[Crossref]

Jpn. J. Appl. Phys. (2)

J. Lu, J. Song, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. Kudryashov, “High-power Nd:Y3Al5O12 ceramic laser,” Jpn. J. Appl. Phys. 39(Part 2, No. 10B), L1048–L1050 (2000).
[Crossref]

Y. Sato and T. Taira, “Spectroscopic properties of neodymium doped yttrium orthovanadate single crystals with High resolution measurement,” Jpn. J. Appl. Phys. 41(1), 5999–6002 (2002).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

Y. Sato, J. Saikawa, T. Taira, and A. Ikesue, “Characteristics of Nd3+-doped Y3ScAl4O12 ceramic laser,” Opt. Mater. 29(10), 1277–1282 (2007).
[Crossref]

Opt. Mater. Express (2)

OSA Trends in Optics and Photonics (1)

J. Saikawa, S. Kurimura, N. Pavel, I. Shoji, and T. Taira, “Performance of widely tunable Yb:YAG microchip lasers,” OSA Trends in Optics and Photonics 34, 106–111 (2000).

Phys. Status Solidi (1)

Y. Sato, J. Akiyama, and T. Taira, “Fundamental investigations in orientation control process for anisotropic laser ceramics,” Phys. Status Solidi 10(6c), 896–902 (2013).
[Crossref]

Polym. J. (1)

T. Kimura, “Study on the effect of magnetic fields on polymeric materials and its application,” Polym. J. 35(11), 823–843 (2003).
[Crossref]

Other (2)

S. J. McNaught, H. Komine, S. B. Weiss, R. Simpson, A. M. F. Johnson, J. Machan, C. P. Asman, M. Weber, G. C. Jones, M. M. Valley, A. Jankevics, D. Burchman, M. McClellan, J. Sollee, J. Marmo, and H. Injeyan, “100 kW coherently combined slab MOPAs,” Proceedings of Conference on Quantum Electronics and Laser Science Conference on Lasers and Electro-Optics, CLEO/QELS, CThA1, Baltimore, MA, USA (2009).

R. W. G. Wyckoff, Crystal Structures 2nd ed. Vol. 3 (John Wily & Sons, Inc., 1965) p. 228.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram for the spheroidal of magnetic energy G of the processed particle under the rotating magnetic field. This particle is made of FAP doped with Yb3+. Doped Yb3+ ions are surrounded by O2- (illustrated by red sphere) and F- (gray sphere). c-axis of this particle is parallel to the symmetric reflection plane including a F- and RE3+ or Ca3+ ions. When ω is equal to or higher than 1/2τS, the alignment torque TM that is emerged by the applied magnetic field is simply proportional to Δχ.
Fig. 2
Fig. 2 Schematic process flow of anisotropic ceramics fabrication that is illustrated into three stages. a) Raw powder of Yb:FAP of which magnetic energy is shown in Fig. 1. b) Slip-casting process under the rotating magnetic field generated by a electromagnet. θ will be fluctuated thermally around zero. c) Casted green body of anisotropic laser ceramics. After preferential grain growth during sintering by HIP, this powder compact will become transparent.
Fig. 3
Fig. 3 Experimental arrangement of the confirming of laser grade quality. This setup included a 880-nm laser diode as a pump source, a delivering fiber, collimating and focusing lens, Nd:YVO4 microchip, flat output coupler, and a Yb:FAP ceramic sample.
Fig. 4
Fig. 4 X-ray diffraction pattern of FAP powder as a raw material for Yb:FAP ceramics and Yb:FAP ceramics. Diffraction from Yb:FAP ceramics were from the surface of 3 mm × 3mm.
Fig. 5
Fig. 5 Transmission and absorption spectra of Yb:FAP ceramics.
Fig. 6
Fig. 6 Dependence of the output power on the incident pump power for Nd:YVO4 microchip laser with the insertion of Yb:FAP ceramics.
Fig. 7
Fig. 7 Slope efficiency of Nd:YVO4 laser as a function of output coupling. 2at.% Yb:FAP ceramics with the thickness of 0.6 mm was placed in the resonator.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G= 0 B MdB = 0 B N m B g J J B dB ,
J B = g J m B B kT [ J e 2 cos 2 ψ+ J h 2 sin 2 ψ ],
Δχ= μ 0 N g J 2 m B 2 VkT ( J e 2 J h 2 ),
τ S = 6ηVkT N g J 2 m B 2 ( J e 2 J h 2 ) B 2 ,
τ R = 2 τ S 1 14 ( τ s ω ) 2 .
ρ i ( hkl )= I i ( hkl ) / h , k , l I i ( h k l ) .
f= ( hkl )S ρ s ( hkl ) ( hkl )S ρ r ( hkl ) 1 ( hkl )S ρ r ( hkl ) .
η s = η 0 ln ( 1 T OC ) L i + ln ( 1 T OC ) ,

Metrics