Abstract

We report the fabrication and nanoscale optical characteristics of polychromatic ZnO/CdxZn1-xO composite nanorods prepared by simple hydrothermal and sol-gel chemical methods. Hydrothermally grown ~300 nm diameter and ~3.5 µm long ZnO nanorods were coated, using the sol-gel method, with a thin CdxZn1-xO layer having a spatially varying Cd mole fraction, where x ranged from x = 0 to 1. Full control of the emission color, including white emission, was achieved by simply varying the local Cd mole fraction along the single ZnO/CdxZn1-xO nanorod. The continuous variation of the optical band gap energy along the single nanorod was visualized using nanoscale confocal absorption spectral imaging.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
K doping effect on structural and optical properties of ZnO nanorods grown on semipolar (112-2) GaN films using a hydrothermal growth method

Soohwan Jang, Pyunghee Son, Jimin Kim, Sung-Nam Lee, and Kwang Hyeon Baik
Opt. Mater. Express 5(7) 1621-1627 (2015)

Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation

Lenka Procházková, Václav Čuba, Alena Beitlerová, Vítězslav Jarý, Sergey Omelkov, and Martin Nikl
Opt. Express 26(22) 29482-29494 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
    [Crossref] [PubMed]
  2. L. Samuelson, “Self-forming nanoscale devices,” Mater. Today 6(10), 22–31 (2003).
    [Crossref]
  3. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
    [Crossref] [PubMed]
  4. D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
    [Crossref]
  5. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
    [Crossref] [PubMed]
  6. X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
    [Crossref] [PubMed]
  7. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
    [Crossref] [PubMed]
  8. J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
    [Crossref]
  9. C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
    [Crossref]
  10. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
    [Crossref] [PubMed]
  11. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [Crossref] [PubMed]
  12. O. Lupan, T. Pauporté, and B. Viana, “Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes,” Adv. Mater. 22(30), 3298–3302 (2010).
    [Crossref] [PubMed]
  13. D. C. Reynolds, D. C. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Commun. 99(12), 873–875 (1996).
    [Crossref]
  14. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
    [Crossref]
  15. A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
    [Crossref] [PubMed]
  16. M. Snure and A. Tiwari, “Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations,” J. Appl. Phys. 104(7), 073707 (2008).
    [Crossref]
  17. C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
    [Crossref]
  18. Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
    [Crossref]
  19. P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
    [Crossref]
  20. X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
    [Crossref]
  21. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
    [Crossref]
  22. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).
  23. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
    [Crossref]
  24. T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
    [Crossref]
  25. H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
    [Crossref]
  26. J. A. V. Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
    [Crossref]
  27. S. Chu and G. Wang, “Realization of 479 nm (2.59 eV) emission CdZnO nanorods and the application on solar cells,” Mater. Lett. 85, 149–152 (2012).
    [Crossref]
  28. R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012).
    [Crossref] [PubMed]
  29. W. E. Mahmoud and A. A. Al-Ghamdi, “Synthesis of CdZnO thin films as a potential candidate for optical swiches,” Opt. Laser Technol. 42(7), 1134–1138 (2010).
    [Crossref]
  30. Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
    [Crossref]
  31. C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
    [Crossref] [PubMed]
  32. J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
    [PubMed]
  33. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref] [PubMed]
  34. D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
    [Crossref] [PubMed]
  35. J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
    [Crossref]
  36. H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
    [Crossref]
  37. M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
    [Crossref]
  38. X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
    [Crossref] [PubMed]
  39. G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
    [Crossref]
  40. M. S. Kim, S. Kim, and J.-Y. Leem, “Laser-assisted sol-gel growth and characteristics of ZnO thin films,” Appl. Phys. Lett. 100(25), 252108 (2012).
    [Crossref]
  41. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
    [Crossref]
  42. B. J. Pierce and R. L. Hengehold, “Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide,” J. Appl. Phys. 47(2), 644 (1976).
    [Crossref]
  43. A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
    [Crossref]
  44. Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
    [Crossref]
  45. M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
    [Crossref]

2014 (1)

A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
[Crossref] [PubMed]

2013 (2)

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
[Crossref] [PubMed]

2012 (7)

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

S. Chu and G. Wang, “Realization of 479 nm (2.59 eV) emission CdZnO nanorods and the application on solar cells,” Mater. Lett. 85, 149–152 (2012).
[Crossref]

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012).
[Crossref] [PubMed]

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

M. S. Kim, S. Kim, and J.-Y. Leem, “Laser-assisted sol-gel growth and characteristics of ZnO thin films,” Appl. Phys. Lett. 100(25), 252108 (2012).
[Crossref]

A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
[Crossref]

2011 (2)

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

2010 (3)

W. E. Mahmoud and A. A. Al-Ghamdi, “Synthesis of CdZnO thin films as a potential candidate for optical swiches,” Opt. Laser Technol. 42(7), 1134–1138 (2010).
[Crossref]

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

O. Lupan, T. Pauporté, and B. Viana, “Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes,” Adv. Mater. 22(30), 3298–3302 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
[Crossref]

2008 (3)

M. Snure and A. Tiwari, “Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations,” J. Appl. Phys. 104(7), 073707 (2008).
[Crossref]

G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
[Crossref]

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

2007 (6)

X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
[Crossref] [PubMed]

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

2006 (2)

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

2005 (2)

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

2004 (2)

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

2003 (1)

L. Samuelson, “Self-forming nanoscale devices,” Mater. Today 6(10), 22–31 (2003).
[Crossref]

2002 (2)

D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
[Crossref] [PubMed]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

2001 (3)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

2000 (2)

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

1998 (2)

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

1997 (1)

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

1996 (1)

D. C. Reynolds, D. C. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Commun. 99(12), 873–875 (1996).
[Crossref]

1976 (1)

B. J. Pierce and R. L. Hengehold, “Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide,” J. Appl. Phys. 47(2), 644 (1976).
[Crossref]

1970 (1)

J. A. V. Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Al-Ghamdi, A. A.

W. E. Mahmoud and A. A. Al-Ghamdi, “Synthesis of CdZnO thin films as a potential candidate for optical swiches,” Opt. Laser Technol. 42(7), 1134–1138 (2010).
[Crossref]

Ankonina, G.

A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
[Crossref] [PubMed]

Appell, D.

D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
[Crossref] [PubMed]

Ates, A.

Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
[Crossref]

Azarov, A. Y.

A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
[Crossref]

Bagnall, D. M.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Bang, J.

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

Bergmann, M. J.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Bergstresser, T. K.

J. A. V. Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Brif, A.

A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
[Crossref] [PubMed]

Broser, I.

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

Caglar, M.

Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
[Crossref]

Caglar, Y.

Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
[Crossref]

Cavas, M.

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012).
[Crossref] [PubMed]

Chang, Y.-S.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Chen, C.-W.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Chen, K.-H.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Chen, L. J.

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

Chen, L.-C.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Chen, M. Y.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Chen, X.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Chen, Y. F.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Chia, C. H.

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

Chiang, H.-H.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Chien, C.-T.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Chisholm, M. F.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Cho, E. H.

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

Choi, W. J.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Choopun, S.

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

Chu, S.

S. Chu and G. Wang, “Realization of 479 nm (2.59 eV) emission CdZnO nanorods and the application on solar cells,” Mater. Lett. 85, 149–152 (2012).
[Crossref]

Chu, T.-Y.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Cui, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Dahan, P.

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

Deng, Y.

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

Dhakal, K. P.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

Drathen, C.

A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
[Crossref] [PubMed]

Duan, X.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Everitt, H. O.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Fang, W.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

Feng, L.

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

Feng, S. Q.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

Feng, X.

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

Fleurov, V.

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

Geng, K. W.

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

Goldberger, J.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Goto, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Greene, L. E.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Guo, P.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Gupta, R. K.

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012).
[Crossref] [PubMed]

Hallén, A.

A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
[Crossref]

He, J. H.

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

Heitz, R.

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

Hengehold, R. L.

B. J. Pierce and R. L. Hengehold, “Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide,” J. Appl. Phys. 47(2), 644 (1976).
[Crossref]

Heo, Y. W.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Hoffmann, A.

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

Hong, Y. K.

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

Hsin, C. L.

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

Hu, W.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Huang, B.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Huang, K.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Huang, W.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Huang, Y.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Hwang, D.-K.

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

Hwang, H.-S.

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

Ilican, S.

Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
[Crossref]

Ip, K.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Ivill, M. P.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Jeon, S. M.

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Jeong, M.-Y.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Jiang, L.

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

Jin, C.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Jin, M.

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

Jogai, B.

D. C. Reynolds, D. C. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Commun. 99(12), 873–875 (1996).
[Crossref]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Joo, J.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Jung, J. S.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

Kang, J.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Kawasaki, M.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Kenanakis, G.

G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
[Crossref]

Kim, D. C.

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

Kim, D.-C.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Kim, E. D.

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

Kim, H. S.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Kim, H.-J.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Kim, J.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Kim, J. H.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

Kim, J. S.

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Kim, M. S.

M. S. Kim, S. Kim, and J.-Y. Leem, “Laser-assisted sol-gel growth and characteristics of ZnO thin films,” Appl. Phys. Lett. 100(25), 252108 (2012).
[Crossref]

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

Kim, S.

M. S. Kim, S. Kim, and J.-Y. Leem, “Laser-assisted sol-gel growth and characteristics of ZnO thin films,” Appl. Phys. Lett. 100(25), 252108 (2012).
[Crossref]

Koida, T.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Koinuma, H.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Kong, Y. C.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

Koyama, S.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Ku, C.-H.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Kuang, Q.

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

Kuznetsov, A. Y.

A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
[Crossref]

Lao, C. S.

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Lee, D.-Y.

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Lee, H.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

Lee, J. W.

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

Lee, Y. B.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Leem, J.-Y.

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

M. S. Kim, S. Kim, and J.-Y. Leem, “Laser-assisted sol-gel growth and characteristics of ZnO thin films,” Appl. Phys. Lett. 100(25), 252108 (2012).
[Crossref]

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Li, S.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Lieber, C. M.

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Lin, C.-S.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Lin, X.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Liu, J.

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
[Crossref] [PubMed]

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Look, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Commun. 99(12), 873–875 (1996).
[Crossref]

Lupan, O.

O. Lupan, T. Pauporté, and B. Viana, “Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes,” Adv. Mater. 22(30), 3298–3302 (2010).
[Crossref] [PubMed]

Mahmoud, W. E.

W. E. Mahmoud and A. A. Al-Ghamdi, “Synthesis of CdZnO thin films as a potential candidate for optical swiches,” Opt. Laser Technol. 42(7), 1134–1138 (2010).
[Crossref]

Makino, T.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

Masubuchi, K.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Montano, M.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Muth, J. F.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Nam, G.

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

Narayan, J.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Norton, D. P.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Oh, M.-S.

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

Ohtomo, A.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Özgür, Ü.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Pan, A.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Pan, F.

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

Park, D. H.

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Park, H.

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

Park, M.-C.

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

Park, Q.-H.

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

Park, S.-J.

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

Pauporté, T.

O. Lupan, T. Pauporté, and B. Viana, “Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes,” Adv. Mater. 22(30), 3298–3302 (2010).
[Crossref] [PubMed]

Pearton, S. J.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Pierce, B. J.

B. J. Pierce and R. L. Hengehold, “Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide,” J. Appl. Phys. 47(2), 644 (1976).
[Crossref]

Pokroy, B.

A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
[Crossref] [PubMed]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Reynolds, D. C.

D. C. Reynolds, D. C. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Commun. 99(12), 873–875 (1996).
[Crossref]

Sakurai, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Samuelson, L.

L. Samuelson, “Self-forming nanoscale devices,” Mater. Today 6(10), 22–31 (2003).
[Crossref]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Segawa, Y.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Seong, D.-J.

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

Sharma, A. K.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Sharma, R. P.

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

Shiroki, R.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

Snure, M.

M. Snure and A. Tiwari, “Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations,” J. Appl. Phys. 104(7), 073707 (2008).
[Crossref]

Somorjai, G.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Son, J.-S.

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Song, C.

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

Song, J.

X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
[Crossref] [PubMed]

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Steiner, T.

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Stratakis, E.

G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
[Crossref]

Svensson, B. G.

A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
[Crossref]

Tamura, K.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

Tan, D. H.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Teng, C. W.

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

Thurian, P.

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

Tiwari, A.

M. Snure and A. Tiwari, “Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations,” J. Appl. Phys. 104(7), 073707 (2008).
[Crossref]

Tong, L.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Tuan, N. T.

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Vechten, J. A. V.

J. A. V. Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Venkatesan, T.

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

Vermardou, D.

G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
[Crossref]

Viana, B.

O. Lupan, T. Pauporté, and B. Viana, “Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes,” Adv. Mater. 22(30), 3298–3302 (2010).
[Crossref] [PubMed]

Vispute, R. D.

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

Vlachou, K.

G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
[Crossref]

Wan, Q.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Wang, G.

S. Chu and G. Wang, “Realization of 479 nm (2.59 eV) emission CdZnO nanorods and the application on solar cells,” Mater. Lett. 85, 149–152 (2012).
[Crossref]

Wang, H.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

Wang, X.

X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
[Crossref] [PubMed]

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Wang, X. B.

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

Wang, Z. L.

X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
[Crossref] [PubMed]

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Wu, J.-J.

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

Wu, Z.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Xu, J.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Xu, N.

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Yakuphanoglu, F.

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012).
[Crossref] [PubMed]

Yan, Y.

C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
[Crossref] [PubMed]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

Yang, W.

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

Yang, Z.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Yao, J.

C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
[Crossref] [PubMed]

Yao, T.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Yasuda, T.

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Yim, K. G.

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Yoon, H.

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

Yoshida, Y.

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

Yu, D. P.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

Zeng, F.

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

Zhai, J.

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

Zhang, B.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

Zhang, C.

C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
[Crossref] [PubMed]

Zhang, Q.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Zhang, Y.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Zhao, Y. S.

C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
[Crossref] [PubMed]

Zheng, J.

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

Zhou, J.

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Zhu, D.

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

Zhu, X.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Zhu, Z.

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

Zhuang, X.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

ACS Nano (1)

D. H. Park, Y. K. Hong, E. H. Cho, M. S. Kim, D. C. Kim, J. Bang, J. Kim, and J. Joo, “Light-emitting color barcode nanowires using polymers: nanoscale optical characteristics,” ACS Nano 4(9), 5155–5162 (2010).
[Crossref] [PubMed]

Adv. Mater. (5)

J. Joo, D. H. Park, M.-Y. Jeong, Y. B. Lee, H. S. Kim, W. J. Choi, Q.-H. Park, H.-J. Kim, D.-C. Kim, and J. Kim, “Bright light emission of a single polythiophene nanotube strand with a nanometer-scale metal coating,” Adv. Mater. 19(19), 2824–2829 (2007).
[Crossref]

C. Zhang, Y. Yan, J. Yao, and Y. S. Zhao, “Manipulation of light flows in organic color-graded microstructures towards integrated photonic heterojunction devices,” Adv. Mater. 25(20), 2854–2859 (2013).
[Crossref] [PubMed]

J. H. He, C. L. Hsin, J. Liu, L. J. Chen, and Z. L. Wang, “Piezoelectric grated diode of a single ZnO nanorwire,” Adv. Mater. 19(6), 781–784 (2007).
[Crossref]

O. Lupan, T. Pauporté, and B. Viana, “Low-voltage UV-electroluminescence from ZnO-nanowire array/p-GaN light-emitting diodes,” Adv. Mater. 22(30), 3298–3302 (2010).
[Crossref] [PubMed]

A. Brif, G. Ankonina, C. Drathen, and B. Pokroy, “Bio-inspired band gap engineering of zinc oxide by intracrystalline incorporation of amino acids,” Adv. Mater. 26(3), 477–481 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (10)

C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, and J. Narayan, “Refractive indices and absorption coefficients of MgxZn1-xO alloys,” Appl. Phys. Lett. 76(8), 979 (2000).
[Crossref]

C. S. Lao, Q. Kuang, Z. L. Wang, M.-C. Park, and Y. Deng, “Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors,” Appl. Phys. Lett. 90(26), 262107 (2007).
[Crossref]

H. Lee, J. H. Kim, K. P. Dhakal, J. W. Lee, J. S. Jung, J. Joo, and J. Kim, “Anisotropic optical absorption of organic rubrene single nanoplates and thin films studies by µ-mapping absorption spectroscopy,” Appl. Phys. Lett. 101(11), 113103 (2012).
[Crossref]

A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, “MgxZn1-xO as a II-VI widegap semiconductor alloy,” Appl. Phys. Lett. 72(19), 2466 (1998).
[Crossref]

S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films,” Appl. Phys. Lett. 80, 1529 (2002).

T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, “Radiative and noradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells,” Appl. Phys. Lett. 77(11), 1632 (2000).
[Crossref]

T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, “Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films,” Appl. Phys. Lett. 78(9), 1237 (2001).
[Crossref]

D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Chen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70(17), 2230 (1997).
[Crossref]

M. S. Kim, S. Kim, and J.-Y. Leem, “Laser-assisted sol-gel growth and characteristics of ZnO thin films,” Appl. Phys. Lett. 100(25), 252108 (2012).
[Crossref]

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407 (2001).
[Crossref]

Appl. Surf. Sci. (2)

G. Kenanakis, E. Stratakis, K. Vlachou, and D. Vermardou, “Light-induced reversible hydrophilicity of ZnO structures grown by aqueous chemical growth,” Appl. Surf. Sci. 254(18), 5695–5699 (2008).
[Crossref]

X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, “Photoluminescence and Raman scattering of Cu-doped ZnO films prepared by magnetron sputtering,” Appl. Surf. Sci. 253(16), 6905–6909 (2007).
[Crossref]

Electron. Mater. Lett. (1)

H. Park, G. Nam, H. Yoon, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence properties of CdxZn1-xO thin films prepared by sol-gel spin-coating method,” Electron. Mater. Lett. 9(4), 497–500 (2013).
[Crossref]

J. Am. Chem. Soc. (1)

X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc. 126(1), 62–63 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (3)

B. J. Pierce and R. L. Hengehold, “Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide,” J. Appl. Phys. 47(2), 644 (1976).
[Crossref]

Y.-S. Chang, C.-T. Chien, C.-W. Chen, T.-Y. Chu, H.-H. Chiang, C.-H. Ku, J.-J. Wu, C.-S. Lin, L.-C. Chen, and K.-H. Chen, “Structural and optical properties of single crystal Zn1-xMgxO nanorods-experimental and theoretical studies,” J. Appl. Phys. 101(3), 033502 (2007).
[Crossref]

M. Snure and A. Tiwari, “Band-gap engineering of Zn1-xGaxO nanopowders: synthesis, structural and optical characterizations,” J. Appl. Phys. 104(7), 073707 (2008).
[Crossref]

J. Electrochem. Soc. (1)

M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen redicals,” J. Electrochem. Soc. 155(9), D599–D603 (2008).
[Crossref]

J. Mater. Chem. (1)

Z. Wu, Y. Zhang, J. Zheng, X. Lin, X. Chen, B. Huang, H. Wang, K. Huang, S. Li, and J. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020 (2011).
[Crossref]

J. Phys. Condens. Matter (1)

P. Dahan, V. Fleurov, P. Thurian, R. Heitz, A. Hoffmann, and I. Broser, “Properties of the intermediately bound α-, β- and γ- excitons in ZnO:Cu,” J. Phys. Condens. Matter 10(9), 2007–2019 (1998).
[Crossref]

J. Phys. D Appl. Phys. (2)

Y. Caglar, M. Caglar, S. Ilican, and A. Ates, “Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method,” J. Phys. D Appl. Phys. 42(6), 065421 (2009).
[Crossref]

A. Y. Azarov, A. Hallén, B. G. Svensson, and A. Y. Kuznetsov, “Annealing of ion implanted CdZnO,” J. Phys. D Appl. Phys. 45(23), 235304 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. S. Kim, K. G. Yim, S. M. Jeon, D.-Y. Lee, J. S. Kim, J. S. Kim, J.-S. Son, and J.-Y. Leem, “Photoluminescence studies of porous ZnO nanorods,” Jpn. J. Appl. Phys. 50(3R), 035003 (2011).
[Crossref]

Mater. Lett. (1)

S. Chu and G. Wang, “Realization of 479 nm (2.59 eV) emission CdZnO nanorods and the application on solar cells,” Mater. Lett. 85, 149–152 (2012).
[Crossref]

Mater. Today (2)

L. Samuelson, “Self-forming nanoscale devices,” Mater. Today 6(10), 22–31 (2003).
[Crossref]

D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, and T. Steiner, “ZnO: growth, doping & processing,” Mater. Today 7(6), 34–40 (2004).
[Crossref]

Nano Lett. (2)

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5(7), 1231–1236 (2005).
[Crossref] [PubMed]

X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z. L. Wang, “Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire,” Nano Lett. 6(12), 2768–2772 (2006).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Nature (2)

X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409(6816), 66–69 (2001).
[Crossref] [PubMed]

D. Appell, “Nanotechnology. Wired for success,” Nature 419(6907), 553–555 (2002).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

W. E. Mahmoud and A. A. Al-Ghamdi, “Synthesis of CdZnO thin films as a potential candidate for optical swiches,” Opt. Laser Technol. 42(7), 1134–1138 (2010).
[Crossref]

Phys. Rev. B (1)

J. A. V. Vechten and T. K. Bergstresser, “Electronic structures of semiconductor alloys,” Phys. Rev. B 1(8), 3351–3358 (1970).
[Crossref]

Sci Rep (1)

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep 2, 820 (2012).
[PubMed]

Science (3)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312(5771), 242–246 (2006).
[Crossref] [PubMed]

X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316(5821), 102–105 (2007).
[Crossref] [PubMed]

Solid State Commun. (1)

D. C. Reynolds, D. C. Look, and B. Jogai, “Optically pumped ultraviolet lasing from ZnO,” Solid State Commun. 99(12), 873–875 (1996).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

R. K. Gupta, M. Cavas, and F. Yakuphanoglu, “Structural and optical properties of nanostructure CdZnO films,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 95, 107–113 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Top-view and (b) cross-section view FE-SEM images of ZnO nanorods on a Si substrate grown by the hydrothermal method. (c) Low- and (d) high-magnification FE-SEM images of a dispersed single ZnO/CdxZn1-xO nanorod. (e) Schematic diagram of polychromatic ZnO/CdxZn1-xO composite nanorods with spatially varying Cd mole fraction. (f) Typical PL spectrum of the ZnO nanorods.
Fig. 2
Fig. 2 Fluorescence image of a half-coated emission ZnO/CdxZn1-xO composite nanorod with different Cd mole fraction, x: (a) x = 0.25, (b) x = 0.5, (c) x = 0.75, and (d) x = 1. (e) PL spectrum of the half-coated emission ZnO/CdxZn1-xO composite nanorod with different Cd mole fraction: (a) x = 0.25, (b) x = 0.5, (c) x = 0.75, and (d) x = 1.
Fig. 3
Fig. 3 (a) FE-SEM image of a polychromatic ZnO/CdxZn1-xO composite nanorod. The white squares represent the 15 different regions inspected by EDS analysis. The scale bar is 500 nm. (b) EDS spectra obtained from selected 5 regions of the polychromatic ZnO/CdxZn1-xO composite nanorod shown in Fig. 3(a). (c) Integrated spectral intensities of Cd and Zn peaks in EDS spectra as a function of the spatial position along the nanorod. The dotted lines represent the average value for adjacent three regions.
Fig. 4
Fig. 4 Fluorescence image of (a) ZnO nanorods and (b) polychromatic ZnO/CdxZn1-xO composite nanorods grown on the Si substrate. The insets show the fluorescence images of a single ZnO nanorod and a polychromatic ZnO/CdxZn1-xO composite nanorod, respectively. (c) Representative PL spectrum of a polychromatic ZnO/CdxZn1-xO composite nanorod. (d) CIE x and y chromaticity diagram of the polychromatic ZnO/CdxZn1-xO composite nanorods.
Fig. 5
Fig. 5 (a) Confocal PL mapping image of a dispersed single polychromatic ZnO/CdxZn1-xO composite nanorod. (b) PL spectrum of a single polychromatic ZnO/CdxZn1-xO composite nanorod measured at ①, ②, ③, and ④ in the confocal PL mapping image. (c) Rearranged confocal PL mapping image in the wavelength ranges of 360 to 450 nm, 450 to 495 nm, 495 to 570 nm, and 620 to 750 nm.
Fig. 6
Fig. 6 (a) Nanoscale confocal absorption intensity mapping image of a single polychromatic ZnO/CdxZn1-xO composite nanorod. The inset shows the optical band gap of the dispersed single polychromatic ZnO/CdxZn1-xO composite nanorod as a function of the Cd mole fraction. (b) Plot of (αhv)2 vs. the photon energy of the single polychromatic ZnO/CdxZn1-xO composite nanorod measured at locations ①, ②, ③, ④, and ⑤, marked in the confocal absorption mapping image (a).

Metrics