Abstract

Nonlinear optical response of Au metallic nanoparticles, synthesized and embedded in sapphire by using ion implantation, as a function of their size and shape is studied. The size of the Au NPs was varied by controlling the annealing time of the gold-irradiated sapphire in a reducing atmosphere. Their shape was changed from approximately spherical to prolate by swift heavy-ion irradiation using Si3+, obtaining an anisotropic composite consisting in deformed NPs, all oriented in the direction of the Si beam irradiation. At 532 nm and 26 ps pulses, the isotropic system shows negative nonlinear absorption increasing with size, and positive nonlinear refraction. On the other hand, prolate nanoparticles show negative (null) absorption and null (positive) refraction for the minor (major) axis. This kind of system also shows figures of merit and relaxing times in the order of the picoseconds, appropriate for all-optical switching applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  2. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).
  3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  4. L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011).
    [CrossRef]
  5. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
    [CrossRef]
  6. R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
    [CrossRef]
  7. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Size-related third-order optical nonlinearities of Au nanoparticle arrays,” Opt. Express18(13), 13874–13879 (2010).
    [CrossRef] [PubMed]
  8. J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
    [CrossRef]
  9. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
    [CrossRef]
  10. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  11. V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
    [CrossRef]
  12. S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
    [CrossRef]
  13. Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
    [CrossRef] [PubMed]
  14. K. Wang, H. Long, M. Fu, G. Yang, and P. X. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010).
    [CrossRef] [PubMed]
  15. R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
    [CrossRef]
  16. J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett.34(3), 307–309 (2009).
    [CrossRef] [PubMed]
  17. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
    [CrossRef]
  18. Y. Li, S. Zhang, J. Liu, and K. Zhang, “Quantum correlation between fundamental and second-harmonic field via second-harmonic generation,” J. Opt. Soc. Am. B24(3), 660–663 (2007).
    [CrossRef]
  19. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
    [CrossRef] [PubMed]
  20. S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
    [CrossRef] [PubMed]
  21. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009).
    [CrossRef]
  22. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985)
  23. J. E. Midwinter, Photonics in Switching (Academic Press, 1993)
  24. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
    [CrossRef]
  25. A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008).
    [CrossRef]
  26. P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
    [CrossRef]
  27. P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver are preparing a manuscript to be called “Ion beam induced deformation of gold nano-particles embedded in Sapphire.”
  28. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
    [CrossRef]
  29. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000).
    [CrossRef] [PubMed]
  30. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010).
    [CrossRef] [PubMed]
  31. A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
    [CrossRef]
  32. R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
    [CrossRef]
  33. M. Nastasi and J. W. Mayer, “Ion Implantation and Synthesis of Materials,” Springer, NY, (2006).
  34. E. Cattaruzza and F. Gonella, “Metal Nanoclusters by Ion Implantation,” H. S. Nalwa (Ed), Encyclopedia of Nanoscience and Nanotechnology, Vol.5, American Scientific Publishers, 369–385 (2004).
  35. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
    [CrossRef]
  36. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt.22(21), 3406–3410 (1983).
    [CrossRef] [PubMed]
  37. G. Boundebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
    [CrossRef]
  38. O. Kahl, D. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, F. Niessler, and M. Wegener, “Thermal nonlinearities in gold nanostructures,” (personal communication, 2013).
  39. S. I. Anisimov, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974).
  40. M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992).
    [CrossRef] [PubMed]
  41. Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
    [CrossRef]

2012 (4)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
[CrossRef]

2011 (2)

2010 (6)

K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Size-related third-order optical nonlinearities of Au nanoparticle arrays,” Opt. Express18(13), 13874–13879 (2010).
[CrossRef] [PubMed]

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
[CrossRef]

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

K. Wang, H. Long, M. Fu, G. Yang, and P. X. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010).
[CrossRef] [PubMed]

K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett.35(10), 1560–1562 (2010).
[CrossRef] [PubMed]

2009 (4)

G. Boundebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

J. T. Seo, Q. G. Yang, W. J. Kim, J. H. Heo, S. M. Ma, J. Austin, W. S. Yun, S. S. Jung, S. W. Han, B. Tabibi, and D. Temple, “Optical nonlinearities of Au nanoparticles and Au/Ag coreshells,” Opt. Lett.34(3), 307–309 (2009).
[CrossRef] [PubMed]

2008 (3)

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008).
[CrossRef]

2007 (3)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

Y. Li, S. Zhang, J. Liu, and K. Zhang, “Quantum correlation between fundamental and second-harmonic field via second-harmonic generation,” J. Opt. Soc. Am. B24(3), 660–663 (2007).
[CrossRef]

2005 (4)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

2003 (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

2000 (2)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
[CrossRef]

G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spälter, R. E. Slusher, S. W. Cheong, J. S. Sanghera, and I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett.25(4), 254–256 (2000).
[CrossRef] [PubMed]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

1992 (1)

M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992).
[CrossRef] [PubMed]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

1988 (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

1983 (1)

1974 (1)

S. I. Anisimov, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Aggarwal, I. D.

Alves, E.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Anisimov, S. I.

S. I. Anisimov, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Austin, J.

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Bocchio, N.

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

Boundebs, G.

G. Boundebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

Butt, H.-J.

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

Chang, S. H.

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Chang, Y. C.

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Cheang-Wong, J. C.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

Cheong, S. W.

Clare, S. E.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Crespo-Sosa, A.

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

da Silva, R. C.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Danckwerts, M.

S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Dufour, C.

M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992).
[CrossRef] [PubMed]

Dufour, Ch.

Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Fedus, K.

G. Boundebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Fernández-Hernández, R. C.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011).
[CrossRef]

Finlayson, N.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

Fischer, J.

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

Fu, M.

Ganeev, R.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Garetz, B. A.

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

Gleason-Villagran, R.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

González, A. L.

A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Halas, N. J.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Han, S. W.

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Heo, J. H.

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hwang, H. Y.

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Jiménez-Hernández, J. L.

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

Jung, S. S.

Katsufuji, T.

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Khomenkov, V.

Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
[CrossRef]

Khosrofian, J. M.

Kim, W. J.

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Koynov, K.

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

Kreiter, M.

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

Kumar, G. R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
[CrossRef]

Lal, S.

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Lenz, G.

Li, Y.

Lines, M. E.

Liu, J.

Long, H.

López-Suárez, A.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

Lu, P.

Lu, P. X.

Ma, S. M.

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).

Marques, C.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Mota-Santiago, P. E.

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Noguez, C.

A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008).
[CrossRef]

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

Nordlander, P.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Novotny, L.

S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

Oliver, A.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Palomba, S.

S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

Paumier, E.

M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Philip, R.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
[CrossRef]

Pradeep, T.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Rangel-Rojo, R.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011).
[CrossRef]

Reyes-Esqueda, J. A.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008).
[CrossRef]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Rizza, G.

Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
[CrossRef]

Rodríguez-Fernández, L.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

L. Tamayo-Rivera, R. C. Fernández-Hernández, L. Rodríguez-Fernández, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “Wavelength-varying third-order nonlinear optical response of Ag nanoparticles-Si quantum dots integrated plasmonic system,” Opt. Mater. Express1(5), 980–989 (2011).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

Ryasnyanskiy, A. I.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Sandhyarani, N.

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
[CrossRef]

Sanghera, J. S.

Seaton, C. T.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

Seo, J. T.

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Silva, M. R.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

Silva-Pereyra, H. G.

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

Slusher, R. E.

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).

Spälter, S.

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Stegeman, G. I.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

Stepanov, A. L.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Stockman, M. I.

Su, Y. H.

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Tabibi, B.

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Tamayo-Rivera, L.

Temple, D.

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

Torres-Torres, C.

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

Toulemonde, M.

Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
[CrossRef]

M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992).
[CrossRef] [PubMed]

Tseng, S.-W.

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Tu, S. L.

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Unger, A.

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

Usmanov, T.

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

Wang, K.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

West, J. L.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Wright, E. M.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

Yang, G.

Yang, Q. G.

Yannopapas, V.

V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
[CrossRef]

Yun, W. S.

Zanoni, R.

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).

Zhang, K.

Zhang, S.

Zhang, W. M.

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Zimmermann, J.

Acc. Chem. Res. (1)

S. Lal, S. E. Clare, and N. J. Halas, “Nanoshell-enabled photothermal cancer therapy: Impending clinical impact,” Acc. Chem. Res.41(12), 1842–1851 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: From synthesis and properties to biological and biomedical applications,” Adv. Mater.21(48), 4880–4910 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez-Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver, “Size characterization of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing,” Appl. Surf. Sci.259, 574–581 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26(4), 760–769 (1990).
[CrossRef]

J. Appl. Phys. (2)

G. Boundebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys.105(10), 103106 (2009).
[CrossRef]

C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third-order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys.104(1), 014306 (2008).
[CrossRef]

J. Lightwave Technol. (1)

G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol.6(6), 953–970 (1988).
[CrossRef]

J. Opt. (1)

R. C. Fernández-Hernández, R. Gleason-Villagran, C. Torres-Torres, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, A. López-Suárez, R. Rangel-Rojo, A. Oliver, and J. A. Reyes-Esqueda, “On the physical contributions to the third-order nonlinear optical response in plasmonic nanocomposites,” J. Opt.14(12), 125203 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

S. Palomba, M. Danckwerts, and L. Novotny, “Nolinear plasmonics with gold nanoparticle antenna,” J. Opt. A, Pure Appl. Opt.11(11), 114030 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (3)

C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C111(10), 3806–3819 (2007).
[CrossRef]

A. L. González, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C112(19), 7356–7362 (2008).
[CrossRef]

J. Fischer, N. Bocchio, A. Unger, H.-J. Butt, K. Koynov, and M. Kreiter, “Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures,” J. Phys. Chem. C114(49), 20968–20973 (2010).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Ch. Dufour, V. Khomenkov, G. Rizza, and M. Toulemonde, “Ion-matter interaction: the three-dimensional version of the thermal spike model. Application to nanoparticle irradiation with swift heavy ions,” J. Phys. D Appl. Phys.45(6), 065302 (2012).
[CrossRef]

Nano Lett. (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett.5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Nanoscale (1)

Y. H. Su, S. L. Tu, S.-W. Tseng, Y. C. Chang, S. H. Chang, and W. M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale2(12), 2639–2646 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007).
[CrossRef]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Opt. Commun. (2)

V. Yannopapas, “Enhancement of nonlinear susceptibilities near plasmonic metamaterials,” Opt. Commun.283(8), 1647–1649 (2010).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, “Application of RZ-scan technique for investigation of nonlinear refraction of sapphire doped with Ag, Cu, and Au nanoparticles,” Opt. Commun.253(1-3), 205–213 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Rev. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rev.408, 131–314 (2005).

Phys. Rev. B (1)

R. Philip, G. R. Kumar, N. Sandhyarani, and T. Pradeep, “Picosecond optical limiting in monolayer protected cluster gold, silver and gold-silver alloy nanoclusters,” Phys. Rev. B62, 13160–13166 (2000).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. Toulemonde, C. Dufour, and E. Paumier, “Transient thermal process after a high-energy heavy-ion irradiation of amorphous metals and semiconductors,” Phys. Rev. B Condens. Matter46(22), 14362–14369 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

S. I. Anisimov, “Electron emission from metal surfaces exposed to ultrashort laser pulses,” Sov. Phys. JETP39, 375–377 (1974).

Tech. Phys. Lett. (1)

A. L. Stepanov, C. Marques, E. Alves, R. C. da Silva, M. R. Silva, R. Ganeev, A. I. Ryasnyanskiy, and T. Usmanov, “Nonlinear optical properties of gold nanoparticles synthesized by ion implantation in sapphire matrix,” Tech. Phys. Lett.31(8), 702–705 (2005).
[CrossRef]

Other (6)

M. Nastasi and J. W. Mayer, “Ion Implantation and Synthesis of Materials,” Springer, NY, (2006).

E. Cattaruzza and F. Gonella, “Metal Nanoclusters by Ion Implantation,” H. S. Nalwa (Ed), Encyclopedia of Nanoscience and Nanotechnology, Vol.5, American Scientific Publishers, 369–385 (2004).

P. E. Mota-Santiago, A. Crespo-Sosa, J. L. Jiménez Hernández, H. G. Silva-Pereyra, J. A. Reyes-Esqueda, and A. Oliver are preparing a manuscript to be called “Ion beam induced deformation of gold nano-particles embedded in Sapphire.”

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985)

J. E. Midwinter, Photonics in Switching (Academic Press, 1993)

O. Kahl, D. Fishman, S. Webster, D. J. Hagan, E. W. Van Stryland, F. Niessler, and M. Wegener, “Thermal nonlinearities in gold nanostructures,” (personal communication, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Optical absorption spectra of spherical-like Au NPs for different times of annealing treatment. (b) Optical absorption spectra of deformed Au NPs for different incident polarizations. Vertical line centered at 532 nm is used as visual guide.

Fig. 2
Fig. 2

Typical NLO responses for the spherical-like and the deformed NPs embedded in sapphire for a given irradiance. a) NLA and b) NLR as a function of size for the isotropic system. c) NLA and d) NLR as a function of incident polarization for the anisotropic system (null signal for the minor axis is not shown for the sake of a better visualization).

Fig. 3
Fig. 3

(a) Pump-probe measurements for isotropic composites. (b) Bi-exponential fitting for temporal recovery of the probe beam transmittance.

Tables (3)

Tables Icon

Table 1 NLO results for the spherical-like NPs, as well as the diameters of the NPs for the different annealing times.

Tables Icon

Table 2 NLO results for the deformed NPs, which had a diameter of 7 nm prior deformation.

Tables Icon

Table 3 All-optical switching FOMs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( z , S = 1 ) = m = o [ q 0 ( z , 0 ) ] m ( m + 1 ) 3 2 ,
Δ T p v = 0.406 ( 1 S ) 0.25 | Δ Φ 0 | ,
Δ Φ 0 = 2π λ n 2 I 0 L eff .
T(z,Δ Φ 0 )1 4Δ Φ 0 (z/ z 0 ) [ ( z/ z 0 ) 2 +9 ][ ( z/ z 0 ) 2 +1 ] .
W = | n 2 | I s λ α 0 , T = λ | β n 2 | ,

Metrics