Abstract

Graphene and other two-dimensional (2d) crystals are promising materials for photonic and optoelectronic applications. A key requirement for these applications is the development of industrial-scale, reliable, inexpensive production processes, while providing a balance between ease of fabrication and final material quality with on-demand properties. Solution-processing offers a simple and cost-effective pathway to fabricate various 2d crystal based photonic devices, presenting huge integration flexibility compared to conventional methods. Here we present an overview of graphene and other 2d crystals based ultrafast photonics, from solution processing of the raw bulk materials, the fabrication of saturable absorbers, to their applications in ultrafast lasers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
    [CrossRef] [PubMed]
  2. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
    [CrossRef]
  3. L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005).
    [CrossRef] [PubMed]
  4. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon.7, 842–845 (2013).
    [CrossRef]
  5. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
    [CrossRef]
  6. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
    [CrossRef]
  7. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
    [CrossRef]
  8. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
    [CrossRef]
  9. Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
    [CrossRef]
  10. Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
    [CrossRef]
  11. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
    [CrossRef]
  12. Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
    [CrossRef]
  13. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
    [CrossRef]
  14. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30, 427–447 (2012).
    [CrossRef]
  15. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
    [PubMed]
  16. M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
    [CrossRef] [PubMed]
  17. R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).
  18. S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
    [CrossRef]
  19. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
    [CrossRef]
  20. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
    [CrossRef] [PubMed]
  21. M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett.102, 086809 (2009).
    [CrossRef] [PubMed]
  22. D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
    [CrossRef]
  23. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
    [CrossRef]
  24. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
    [CrossRef] [PubMed]
  25. A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
    [CrossRef]
  26. F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.
  27. C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
    [CrossRef]
  28. C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
    [CrossRef] [PubMed]
  29. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012).
    [CrossRef]
  30. P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
    [CrossRef]
  31. K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
    [CrossRef] [PubMed]
  32. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).
  33. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).
  34. N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
    [CrossRef]
  35. J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
    [CrossRef]
  36. M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
    [CrossRef] [PubMed]
  37. M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys.82, 3045–3067 (2010).
    [CrossRef]
  38. P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
    [CrossRef]
  39. J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
    [CrossRef] [PubMed]
  40. V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
    [CrossRef]
  41. J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
    [CrossRef] [PubMed]
  42. W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
    [CrossRef]
  43. Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010).
    [CrossRef]
  44. J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
    [CrossRef] [PubMed]
  45. C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
    [CrossRef]
  46. G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
    [CrossRef] [PubMed]
  47. E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem., 3, 177–216 (1983).
    [CrossRef]
  48. J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., 18, 193–335 (1969).
    [CrossRef]
  49. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
    [CrossRef] [PubMed]
  50. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
    [CrossRef]
  51. H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
    [CrossRef]
  52. T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
    [CrossRef] [PubMed]
  53. M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
    [CrossRef]
  54. J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996).
    [CrossRef]
  55. J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
    [CrossRef]
  56. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
    [CrossRef]
  57. T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.
  58. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
    [CrossRef] [PubMed]
  59. A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
    [CrossRef]
  60. S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
    [CrossRef]
  61. Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
    [CrossRef]
  62. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
    [CrossRef] [PubMed]
  63. M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
    [CrossRef] [PubMed]
  64. A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett.9, 4031–4036 (2009).
    [CrossRef] [PubMed]
  65. O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
    [CrossRef] [PubMed]
  66. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
    [CrossRef]
  67. S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
    [CrossRef] [PubMed]
  68. F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
    [CrossRef]
  69. U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
    [CrossRef] [PubMed]
  70. A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
    [CrossRef]
  71. T. J. Mason, Sonochemistry (Oxford University, 1999).
  72. J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).
  73. http://echa.europa.eu/it/candidate-list-table
  74. H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
    [CrossRef] [PubMed]
  75. S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
    [CrossRef] [PubMed]
  76. T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
    [CrossRef]
  77. B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys.59, 466 (1860).
  78. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80, 1339 (1958).
    [CrossRef]
  79. S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
    [CrossRef]
  80. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
    [CrossRef] [PubMed]
  81. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
    [CrossRef]
  82. Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
    [CrossRef]
  83. Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.
  84. H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011).
    [CrossRef]
  85. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
    [CrossRef] [PubMed]
  86. R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
    [CrossRef] [PubMed]
  87. Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
    [CrossRef]
  88. K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
    [CrossRef]
  89. J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
    [CrossRef]
  90. L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
    [CrossRef]
  91. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
    [CrossRef]
  92. F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989).
    [CrossRef]
  93. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
    [CrossRef] [PubMed]
  94. U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
    [CrossRef]
  95. I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
    [CrossRef]
  96. T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).
  97. A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012).
    [CrossRef]
  98. D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).
  99. J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
    [CrossRef]
  100. J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem.70, 2814–2822 (1966).
    [CrossRef]
  101. F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
    [CrossRef]
  102. M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005).
    [CrossRef] [PubMed]
  103. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
    [CrossRef]
  104. F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy2010, 727134 (2010).
    [CrossRef]
  105. S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
    [CrossRef]
  106. M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem.45, 275–290 (1953).
    [CrossRef] [PubMed]
  107. X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
    [CrossRef] [PubMed]
  108. S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
    [CrossRef]
  109. H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002).
    [CrossRef]
  110. T. Matsuura, J. Kobayashi, S. Ando, T. Maruno, S. Sasaki, and F. Yamamoto, “Heat-resistant flexible-film optical waveguides from fluorinated polyimides,” Appl. Opt., 38, 966–971 (1999).
    [CrossRef]
  111. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
    [CrossRef]
  112. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
    [CrossRef]
  113. D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
    [CrossRef]
  114. X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007).
    [CrossRef] [PubMed]
  115. A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
    [CrossRef]
  116. G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
    [CrossRef]
  117. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
    [CrossRef]
  118. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
    [CrossRef]
  119. R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
    [CrossRef] [PubMed]
  120. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
    [CrossRef]
  121. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
    [CrossRef]
  122. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010).
    [CrossRef] [PubMed]
  123. A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101, 041118 (2012).
    [CrossRef]
  124. Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36, 3024–3026 (2011).
    [CrossRef] [PubMed]
  125. Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
    [CrossRef] [PubMed]
  126. X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett.37, 2394–2396 (2012).
    [CrossRef] [PubMed]
  127. Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express21, 14859–14866 (2013).
    [CrossRef] [PubMed]
  128. Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
    [CrossRef]
  129. C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
    [CrossRef]
  130. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
    [CrossRef]
  131. J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012).
    [CrossRef]
  132. Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
    [CrossRef]
  133. B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011).
    [CrossRef]
  134. J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
    [CrossRef]
  135. D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30, 984–989 (2012).
    [CrossRef]
  136. L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
    [CrossRef]
  137. B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
    [CrossRef]
  138. Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express21, 18969–18974 (2013).
    [CrossRef] [PubMed]
  139. J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
    [CrossRef]
  140. S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express20, 5652–5657 (2012).
    [CrossRef] [PubMed]
  141. J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
    [CrossRef]
  142. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
    [CrossRef] [PubMed]
  143. M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
    [CrossRef]
  144. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20, 15474–15480 (2012).
    [CrossRef] [PubMed]
  145. J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012).
    [CrossRef] [PubMed]
  146. Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20, 23201–23214 (2012).
    [CrossRef] [PubMed]
  147. X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
    [CrossRef]
  148. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
    [CrossRef]
  149. M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013).
    [CrossRef] [PubMed]
  150. L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
    [CrossRef]
  151. L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
    [CrossRef]
  152. Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
    [CrossRef]
  153. J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett.37, 2652–2654 (2012).
    [CrossRef] [PubMed]
  154. J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36, 1948–1950 (2011).
    [CrossRef] [PubMed]
  155. Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
    [CrossRef]
  156. J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett.99, 261107 (2011).
    [CrossRef]
  157. F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
    [CrossRef]
  158. C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).
  159. L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
    [CrossRef]
  160. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
    [CrossRef]
  161. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
    [CrossRef] [PubMed]
  162. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
    [CrossRef]
  163. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
    [CrossRef]
  164. E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
    [CrossRef]
  165. E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
    [CrossRef] [PubMed]
  166. J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express17, 14115–14120 (2009).
    [CrossRef] [PubMed]
  167. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
    [CrossRef] [PubMed]
  168. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
    [CrossRef]
  169. Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005).
    [CrossRef] [PubMed]
  170. Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
    [CrossRef]
  171. Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
    [CrossRef]
  172. M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
    [CrossRef]
  173. G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
    [CrossRef]
  174. Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
    [CrossRef]
  175. Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
    [CrossRef] [PubMed]
  176. H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
    [CrossRef]
  177. G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32, 400–402 (2007).
    [CrossRef] [PubMed]
  178. Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007).
    [CrossRef] [PubMed]
  179. Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon.5, 446–447 (2011).
    [CrossRef]

2013 (29)

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon.7, 842–845 (2013).
[CrossRef]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
[CrossRef]

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
[CrossRef]

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express21, 14859–14866 (2013).
[CrossRef] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express21, 18969–18974 (2013).
[CrossRef] [PubMed]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013).
[CrossRef] [PubMed]

2012 (35)

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30, 427–447 (2012).
[CrossRef]

S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express20, 5652–5657 (2012).
[CrossRef] [PubMed]

D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30, 984–989 (2012).
[CrossRef]

X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett.37, 2394–2396 (2012).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett.37, 2652–2654 (2012).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20, 15474–15480 (2012).
[CrossRef] [PubMed]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20, 23201–23214 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
[CrossRef] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101, 041118 (2012).
[CrossRef]

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012).
[CrossRef]

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
[CrossRef]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
[CrossRef]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012).
[CrossRef]

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

2011 (18)

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011).
[CrossRef]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett.99, 261107 (2011).
[CrossRef]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon.5, 446–447 (2011).
[CrossRef]

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36, 1948–1950 (2011).
[CrossRef] [PubMed]

Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36, 3024–3026 (2011).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

2010 (23)

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy2010, 727134 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010).
[CrossRef]

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
[CrossRef] [PubMed]

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys.82, 3045–3067 (2010).
[CrossRef]

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

2009 (14)

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett.9, 4031–4036 (2009).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett.102, 086809 (2009).
[CrossRef] [PubMed]

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
[CrossRef]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
[CrossRef] [PubMed]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express17, 14115–14120 (2009).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

2008 (9)

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
[CrossRef] [PubMed]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

2007 (6)

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007).
[CrossRef] [PubMed]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32, 400–402 (2007).
[CrossRef] [PubMed]

2006 (5)

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

2005 (9)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
[CrossRef]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005).
[CrossRef] [PubMed]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005).
[CrossRef] [PubMed]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005).
[CrossRef] [PubMed]

2004 (5)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

2003 (2)

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002).
[CrossRef]

1999 (1)

1996 (1)

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996).
[CrossRef]

1995 (1)

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
[CrossRef] [PubMed]

1989 (1)

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989).
[CrossRef]

1983 (1)

E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem., 3, 177–216 (1983).
[CrossRef]

1971 (1)

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
[CrossRef]

1969 (1)

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., 18, 193–335 (1969).
[CrossRef]

1966 (1)

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem.70, 2814–2822 (1966).
[CrossRef]

1958 (2)

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
[CrossRef]

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80, 1339 (1958).
[CrossRef]

1953 (1)

M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem.45, 275–290 (1953).
[CrossRef] [PubMed]

1860 (1)

B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys.59, 466 (1860).

Abidi, N.

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
[CrossRef] [PubMed]

Abramski, K. M.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Acrivos, J. V.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
[CrossRef]

Agnoli, S.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Ahn, J. H.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Ahnood, A.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Aizpurua, J.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

Ajayan, P.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Amaratunga, G.A.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Amendola, V.

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
[CrossRef]

Amezcua-Correa, R.

Ando, S.

Andrew, P.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Anissimova, S.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

Antaris, A. L.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
[CrossRef]

Arnold, M. S.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005).
[CrossRef] [PubMed]

Bachmatiuk, A.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
[CrossRef] [PubMed]

Backes, C.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

Bae, M. K.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
[CrossRef]

Bai, J.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

Balan, A.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
[CrossRef]

Baldwin, R. L.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
[CrossRef]

Bandarkar, F.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
[CrossRef]

Bando, Y.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Bao, Z.

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Barto, R. R.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Baumberg, J. J.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

Beecher, S. J.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Bellus, M. Z.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

Benabid, F.

Bergin, S. D.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Bernard, F.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Blake, P.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

Blake, P. E.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

Blau, W. J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

Blighe, F. M.

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

Bo, Y.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

Boguslawski, J.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Boland, J.

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

Boland, J. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Bonaccorso, F.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
[CrossRef]

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
[CrossRef]

F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy2010, 727134 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Borghese, F.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Boschetto, D.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

Brakke, M. K.

M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem.45, 275–290 (1953).
[CrossRef] [PubMed]

Breusing, M.

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett.102, 086809 (2009).
[CrossRef] [PubMed]

Brodie, B. C.

B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys.59, 466 (1860).

Brown, C. L.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011).
[CrossRef]

Brown, C. T. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Brown, G.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

Buchner, B.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
[CrossRef] [PubMed]

Burgess, B. A.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
[CrossRef] [PubMed]

Cabrales, L.

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
[CrossRef] [PubMed]

Cai, Z.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

Cai, Z. P.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

Calogero, G.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Cao, H.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Cao, J.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

Cao, W.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

Cao, W. J.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
[CrossRef]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Castellani, C. E. S.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Castro Neto, A. H.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

Celik, O.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Chao, F.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Chapman, B. H.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

Chen, H.

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
[CrossRef]

Chen, J.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Chen, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

Chen, S.

Chen, X.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Chen, Y.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012).
[CrossRef]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20, 23201–23214 (2012).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
[CrossRef] [PubMed]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Chen, Y. H.

Chen, Y. P.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Cheng, H.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

Cheng, R.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Chhowalla, M.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Chim, C-Y.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

Chiu, H.-Y.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

Cho, D. K.

Cho, J.

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011).
[CrossRef]

Cho, W. B.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

Choi, S. Y.

Chu, D.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

Chu, D.P.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Cole, M.T.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Coleman, J. N

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

Coleman, J. N.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012).
[CrossRef]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

Colombo, L.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Connell, J. W.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010).
[CrossRef]

Corwin, K. L.

Couny, F.

Cucinotta, C. S.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

Cui, D. F.

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Cui, Y.

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express21, 18969–18974 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

Cunning, B. V.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011).
[CrossRef]

Cunningham, G.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

Dai, H.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Dalton, A. R.

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002).
[CrossRef]

Dalton, L. R.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Dang, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

De, S.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

Dehm, S.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Denti, P.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Dhar, S.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Di Marco, G.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

Dianov, E. M.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

Dikin, D. A.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Divin, C.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

Donegan, J.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

Donegan, J. F.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Duan, X.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Duesberg, G. S.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Ebrahim-Zadeh, M.

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32, 400–402 (2007).
[CrossRef] [PubMed]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Eda, G.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Eiden, A. L.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

Elsaesser, T.

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett.102, 086809 (2009).
[CrossRef] [PubMed]

Elsayed-Ali, H. E.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

Emplit, P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Essig, S.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Evans, D. G.

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
[CrossRef] [PubMed]

Fakhree, M. A.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
[CrossRef]

Fan, D.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

Fan, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
[CrossRef]

Fayaz, G. R.

Feng, C.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

Feng, M.

Feng, Y.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

Ferrari, A.

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Ferrari, A. C.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon.5, 446–447 (2011).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Ferrari, A.C.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Fievet, F.

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989).
[CrossRef]

Figlarz, M.

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989).
[CrossRef]

First, P. N.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

Flahaut, E.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

Flewitt, A.J.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Fox, D.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

Frank, C. W.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Frischkorn, C.

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
[CrossRef] [PubMed]

Fu, B.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

Fujita, H.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
[CrossRef]

Fujita, T.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

Fuse, K.

Galli, G.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

Ganzhorn, M.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Garcia-Gancedo, L.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Garfunkel, E.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Gaucher, A.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Geim, A. K.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Geng, A. C.

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Ghotbi, M.

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007).
[CrossRef] [PubMed]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Goh, C. S.

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Golant, K. M.

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

Golberg, D.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
[CrossRef]

Golling, M.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Gonzalez, J.

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996).
[CrossRef]

Goodwin, A.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Gorza, S. P.

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Granozzi, G.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Green, A. A.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
[CrossRef]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett.9, 4031–4036 (2009).
[CrossRef] [PubMed]

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

Grieveson, E. M.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Grigorenko, A. N.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Grunlan, J. C.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Gucciardi, P.G.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

Gui, L.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Gui, L. L.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

Guinea, F.

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996).
[CrossRef]

Guo, L.

Hajlaoui, M.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

Halim, U.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Hallam, T.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Han, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

Han, W. Q.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

Han, W. S.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
[CrossRef]

Hanlon, D.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

Hao, G.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

Hao, X.-P.

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Hasan, M.

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys.82, 3045–3067 (2010).
[CrossRef]

Hasan, T.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

He, D.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

He, J.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

He, J.-L.

He, X.

He, X. Y.

Hennrich, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

Hernandez, Y.

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

Hersam, M. C.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
[CrossRef]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett.9, 4031–4036 (2009).
[CrossRef] [PubMed]

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005).
[CrossRef] [PubMed]

Hersam, M.C.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Hill, W.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

Hiralal, P.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Hoffman, S.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Holdynski, M.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Hou, W.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Hsieh, G-W.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

Hsieh, W.

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
[CrossRef]

Hu, J.

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

Huang, Y.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Hulvat, J. F.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80, 1339 (1958).
[CrossRef]

Hutchison, J.

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

Iati, M. A.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Ifft, J. B.

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem.70, 2814–2822 (1966).
[CrossRef]

Inoue, Y.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

Ippen, E. P.

Israelachvili, J.

J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).

Jablonski, M.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
[CrossRef]

Jagiello, J.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Jang, S. Y.

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
[CrossRef]

Jang, S.-Y.

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011).
[CrossRef]

Jen, A. K. Y.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Jen, A. K.-H.

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002).
[CrossRef]

Jhon, Y. M.

Jia, Y.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Jiang, B.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

Jiang, D.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Jiang, L.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Jiang, S.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Jiang, Z.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Jie, L.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Jones, P. H.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Jose, R.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Jouyban, A.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
[CrossRef]

Jun, X.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Jung, M.

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013).
[CrossRef] [PubMed]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

Jung, S.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

Kampfrath, T.

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
[CrossRef] [PubMed]

Kane, C.

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys.82, 3045–3067 (2010).
[CrossRef]

Kang, S. H.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Kappes, M. M.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Kar, A. K.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Kelleher, E. J. R.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Kelly, M.J.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Kennedy, G. L.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
[CrossRef] [PubMed]

Khan, U.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Khattab, I. S.

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
[CrossRef]

Khotkevich, V. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Kielpinski, D.

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011).
[CrossRef]

Kim, H.

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011).
[CrossRef]

Kim, J.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

Kim, K.

King, P. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Kityk, I. V.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Kleinhammes, A.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Knabe, K.

Knight, J. C.

Knize, R. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

Kobayashi, J.

Koo, J.

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013).
[CrossRef] [PubMed]

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

Kotake, T.

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

Kozinski, R.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Kravets, V. G.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

Krupke, R.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Kulmala, T.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

Kumar, N.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

Kumar, R.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Lagier, J. P.

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989).
[CrossRef]

Lazzeri, M.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

Lee, J.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

Lee, J. H.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013).
[CrossRef] [PubMed]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

Lee, K.

Lee, S.

Lee, Y.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Li, H.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012).
[CrossRef] [PubMed]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Li, H. Q.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Li, J.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Li, K.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Li, L.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

Li, L. J.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

Li, R. N.

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

Li, S.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

Li, T.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

Li, X.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Li, X. H.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

Li, X.-L.

Li, Y.

Liang, W. Y.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
[CrossRef]

Liangbi, S.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Liao, C.

Lide, D. R.

D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).

Lidorikis, E.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Light, P. S.

Lihe, Z.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Lim, C. T.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Lim, J. K.

Lin, G.-R.

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

Lin, X.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Lin, X. C.

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Lin, Y.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010).
[CrossRef]

Lin, Y.-H.

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

Liou, J.-H.

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

Lipinska, L.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Liu, J.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012).
[CrossRef]

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
[CrossRef]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20, 15474–15480 (2012).
[CrossRef] [PubMed]

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
[CrossRef] [PubMed]

Liu, S.-D.

Liu, X.

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express21, 18969–18974 (2013).
[CrossRef] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

Liu, Y.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

Liu, Z.

Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express21, 14859–14866 (2013).
[CrossRef] [PubMed]

D. Wang, X. He, Z. Liu, C. Liao, and X. Zao, “Passively mode-locked fiber laser based on reduced graphene oxide on microfiber for ultra-wide-band doublet pulse generation,” J. Lightwave Technol.30, 984–989 (2012).
[CrossRef]

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Liu, Z. B.

Liu, Z.-b.

Loh, K.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Loh, K. P.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Lohneysen, H. v.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Lombardo, A.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Lotya, M.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

Lu, G.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

Lu, S.

Luo, A. P.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
[CrossRef]

Luo, D.

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
[CrossRef] [PubMed]

Luo, J. D.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Luo, Z.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

Luo, Z. C.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
[CrossRef]

Luo, Z. Q.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

Ma, H.

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002).
[CrossRef]

Ma, X. Y.

Majchrowski, A.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Mangold, M.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

Mao, N-N.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

Marago, O. M.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Marquardt, C. W.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Marseglia, E.

E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem., 3, 177–216 (1983).
[CrossRef]

Marsi, M.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

Martinez, A.

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon.7, 842–845 (2013).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101, 041118 (2012).
[CrossRef]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010).
[CrossRef] [PubMed]

Martinez-Alonso, A.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
[CrossRef] [PubMed]

Maruno, T.

Maruyama, S.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

Mary, R.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

Mason, T. J.

T. J. Mason, Sonochemistry (Oxford University, 1999).

Mastrogiovanni, D.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Matsuura, T.

Mattevi, C.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Mauri, F.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

May, P.

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

Mazher, J.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
[CrossRef]

McCloskey, D.

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

McComb, D. W.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

McGovern, T.

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

Menzel, R.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

Mertens, J.

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

Michalski, E.

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Milana, S.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Miller, S.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Milne, W. I.

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

Milne, W.I.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Minett, A. I.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Miotkowski, I.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Mkhoyan, K. A.

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Moriarty, G.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Mullen, K.

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007).
[CrossRef] [PubMed]

Murakami, Y.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

Nathan, A.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Nawaz, K.

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

Neely, W.

Nellist, P. D.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Nguyen, S. T.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Ni, G. X.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Nicholls, R. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Nicholson, J. W.

Nicolosi, V.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

Nirmalraj, P. N.

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

Norris, T. B.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

Novoselov, K. S.

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

O’Neill, A.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012).
[CrossRef]

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

O’Neill, W.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80, 1339 (1958).
[CrossRef]

Oh, K.

Ohara, S.

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Ou, F.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Ozyilmaz, B.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Pal, M.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

Paletko, P.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Papalazarou, E.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

Paredes, J. I.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
[CrossRef] [PubMed]

Park, J.

Paul, M. C.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

Paul, P. J.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

Pedersen, K. O.

T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).

Peng, H.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

Peng, Q.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Peng, Q. J.

Peng, Y.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

Perfetti, L.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
[CrossRef] [PubMed]

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Piner, R. D.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Piscanec, S.

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

Popa, D.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Popov, S. V.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

Porwal, H.

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

Privitera, G.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Psaila, N. D.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Qi, J.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Qi, W.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

Qi, X.

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Qiao, S.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Qu, Z.

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
[CrossRef]

Qu, Z. S.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

Ramakrishna, S.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Rammeli, M. H.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
[CrossRef] [PubMed]

Ren, L.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

Ren, Z.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

Robertson, J.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

Robinson, J. T.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Rotermund, F.

Roy Barman, A.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Rozhin, A.

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

Rozhin, A. G.

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Ruan, S. C.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

Rubhausen, M.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Ruoff, R. S.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Ruzicka, B. A.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

Saija, R.

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

Samanta, G. K.

Sanvito, S.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

Sasaki, S.

Scardaci, V.

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Schedin, F.

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Sciascia, C.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

Seo Jung-Woo, T.

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
[CrossRef]

Set, S. Y.

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
[CrossRef]

Shaffer, M. S. P.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

Shen, D. Z.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Shen, Z-X.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

Sheng, Q.

Shi, Y.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Shmeliov, A.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Shukla, A.

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
[CrossRef]

Shum, P. P.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

Sibbett, W.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

Sieber, O. D.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Smirnov, D.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Smith, R. J.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Sobon, G.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Solomon, H. M.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
[CrossRef] [PubMed]

Song, Y.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

Song, Y. W.

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

Song, Y.-W.

Sotor, J.

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Splendiani, A.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

Stankovich, S.

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Staples, R. E.

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
[CrossRef] [PubMed]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

Stupp, S. I.

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005).
[CrossRef] [PubMed]

Su, C. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

Su, L. B.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

Sun, D.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

Sun, L.

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Sun, R.

Sun, X.

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
[CrossRef] [PubMed]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Sun, Y.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Sun, Z.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon.7, 842–845 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon.5, 446–447 (2011).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32, 400–402 (2007).
[CrossRef] [PubMed]

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007).
[CrossRef] [PubMed]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Sun, Z. P.

Suzuki, Y.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Svedberg, T.

T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).

Taleb-Ibrahimi, A.

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

Tan, F.

Tan, P.

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

Tan, W. D.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

Tanaka, Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
[CrossRef]

Tang, C.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
[CrossRef]

Tang, D.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
[CrossRef] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012).
[CrossRef]

Tang, D. Y.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Tang, P.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

Taniguchi, T.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

Tascon, J. M. D.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
[CrossRef] [PubMed]

Taylor, J. R.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

Theuwissen, K.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Thomson, R. R.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

Tian, J.

Tillman, K. A.

Tolk, N. H.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Torrisi, F.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Travers, J. C.

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

Tsang, Y.

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
[CrossRef]

Tsang, Y. H.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

Tsanga, Y. H.

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
[CrossRef]

Van Holde, K. E.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
[CrossRef]

Venkatesan, T.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Vijayaraghavan, A.

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

Villar-Rodil, S.

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
[CrossRef] [PubMed]

Vinograd, J.

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem.70, 2814–2822 (1966).
[CrossRef]

Voiry, D.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

Vozmediano, M.

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996).
[CrossRef]

Wang, D.

Wang, D. N.

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

Wang, G. L.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Wang, H-X.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

Wang, J.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

Wang, J. Z.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

Wang, K.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Wang, P.

Wang, Q.

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012).
[CrossRef]

Wang, Q. J.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

Wang, R.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

Wang, S.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
[CrossRef] [PubMed]

Wang, X.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007).
[CrossRef] [PubMed]

Wang, X. Q.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Wang, Y.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
[CrossRef]

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Wang, Y. G.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005).
[CrossRef] [PubMed]

Wang, Y. S.

Wang, Z.

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
[CrossRef] [PubMed]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

Warner, J. H.

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
[CrossRef] [PubMed]

Washburn, B. R.

Watanabe, K.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

Wei, H.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Welsher, K.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Wen, S.

White, I.

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

White, I. H.

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

Wilkinson, T.

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Williams, J. W.

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
[CrossRef]

Williams, T. V.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010).
[CrossRef]

Wilson, J.

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., 18, 193–335 (1969).
[CrossRef]

Wilson, J. A.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
[CrossRef]

Wirtz, C.

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

Wittwer, V. J.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Wolf, M.

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
[CrossRef] [PubMed]

Wu, D.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Wu, L.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

Wu, S.

Wu, W.

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

Wu, Y.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Wu, Y.-Z.

Wu, Z.

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

Xiao, X.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Xiao, X. S.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

Xie, G. Q.

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

Xin, W.

Xu, B.

Xu, H.

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

Xu, J.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012).
[CrossRef]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20, 15474–15480 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012).
[CrossRef] [PubMed]

Xu, J.-L.

Xu, T-B.

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

Xu, W. C.

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
[CrossRef]

Xu, X. F.

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Xu, Z.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Xu, Z. Y.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005).
[CrossRef] [PubMed]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
[CrossRef]

Yamaguchi, H.

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

Yamamoto, F.

Yamashita, S.

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30, 427–447 (2012).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101, 041118 (2012).
[CrossRef]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010).
[CrossRef] [PubMed]

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

Yan, P. G.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

Yang, C.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Yang, C. X.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

Yang, C.-Y.

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

Yang, J.-x.

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Yang, K.-J.

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett.99, 261107 (2011).
[CrossRef]

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36, 1948–1950 (2011).
[CrossRef] [PubMed]

Yang, L.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

Yang, Q.-H.

Yang, R.

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

Yang, X.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Yang, X. D.

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005).
[CrossRef] [PubMed]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Yang, Y.

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett.37, 2652–2654 (2012).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett.99, 261107 (2011).
[CrossRef]

Ye, C. C.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

Yeom, D.-I.

Yin, Z.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Ying, Z.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Yoffe, A.

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., 18, 193–335 (1969).
[CrossRef]

Yoffe, A. D.

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
[CrossRef]

Yong, B.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Yonggang, W.

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Young, K.

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

Yu, C.-P.

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

Yu, H.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Yu, W.

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

Yu, X.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

Yu, Z.

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

Yuan, X.

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

Yue, Q.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

Zao, X.

Zaric, S.

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Zaugg, C.A.

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Zdrojek, M.

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

Zerbetto, M.

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
[CrossRef]

Zhang, B.-T.

Zhang, G. L.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

Zhang, H.

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20, 23201–23214 (2012).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
[CrossRef] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

Zhang, H. B.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

Zhang, H-L.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

Zhang, L.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

Zhang, M.

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

Zhang, Q.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Zhang, S.

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

Zhang, W.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Zhang, X.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

Zhang, Y.

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
[CrossRef] [PubMed]

Zhao, C.

Zhao, H.

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

Zhao, J. Q.

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Zhao, Q.

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

Zhao, W.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Zhao, W. L.

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Zheng, C. R.

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Zheng, L. H.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

Zheng, W.

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

Zheng, X.

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

Zheng, Z.

Zhi, C. Y.

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
[CrossRef]

Zhi, L.

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007).
[CrossRef] [PubMed]

Zhong, J.

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

Zhou, K. G.

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

Zhou, M.

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

Zhou, Y.

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

Zhu, F.

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

Zhu, H.

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

Zhu, H. W.

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

Zhu, Y.

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

Zou, Y.

ACS Nano (1)

X. Sun, D. Luo, J. Liu, and D. G. Evans, “Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation,” ACS Nano4, 3381–3389 (2010).
[CrossRef] [PubMed]

ACS Nano (6)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4, 803–810 (2010).
[CrossRef] [PubMed]

K. Wang, J. Wang, J. Fan, M. Lotya, A. O’Neill, D. Fox, Y. Feng, X. Zhang, B. Jiang, Q. Zhao, H. Zhang, J. N. Coleman, L. Zhang, and W. J. Blau, “Ultrafast saturable absorption of two-dimensional MoS2nanosheets,” ACS Nano7, 9260–9267 (2013).
[CrossRef] [PubMed]

J. H. Warner, M. H. Rammeli, A. Bachmatiuk, and B. Buchner, “Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation,” ACS Nano4, 1299–1304 (2010).
[CrossRef] [PubMed]

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, and J. N. Coleman, “Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds,” ACS Nano6, 3468–3480 (2012).
[CrossRef] [PubMed]

F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, and A. C. Ferrari, “Inkjet-printed graphene electronics,” ACS Nano, 6, 2992–3006 (2012).
[CrossRef] [PubMed]

O. M. Marago, F. Bonaccorso, R. Saija, M. A. Iati, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, and A.C. Ferrari, “Brownian motion of graphene,” ACS Nano4, 7515–7523 (2010).
[CrossRef] [PubMed]

ACS Nano. (1)

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2phototransistors,” ACS Nano.6, 74–80 (2012).
[CrossRef]

Adv. Funct. Mater. (2)

C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, “Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films,” Adv. Funct. Mater.19, 2577–2583 (2009).
[CrossRef]

Q. Bao, H. Zhang, J.-x. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, “Graphene-polymer nanofiber membrane for ultrafast photonics,” Adv. Funct. Mater.20, 782–791 (2010).
[CrossRef]

Adv. Mater. (6)

R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G. S. Duesberg, J. C. Grunlan, G. Moriarty, J. Chen, J. Wang, A. I. Minett, V. Nicolosi, and J. N. Coleman, “Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions,” Adv. Mater.23, 3944–3948 (2011).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21, 3874–3899 (2009).
[CrossRef]

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon nanotube polycarbonate composites for ultrafast lasers,” Adv. Mater.20, 4040–4043 (2008).
[CrossRef]

J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, and W. J. Blau, “Broadband nonlinear optical response of graphene dispersions,” Adv. Mater., 21, 2430–2435 (2009).
[CrossRef]

C. Y. Zhi, Y. Bando, C. Tang, and D. Golberg, “Large-scale fabrication of boron nitride nanosheets and their polymeric composites with improved thermal and mechanical properties,” Adv. Mater.21, 2889–2893 (2009).
[CrossRef]

H. Ma, A. K.-H. Jen, and A. R. Dalton, “Polymer-based optical waveguides: Materials, processing and devices,” Adv. Mater.14, 1339–1365 (2002).
[CrossRef]

Adv. Phys. (1)

J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., 18, 193–335 (1969).
[CrossRef]

AIP Advances (1)

S. Dhar, A. Roy Barman, G. X. Ni, X. Wang, X. F. Xu, K. P. Loh, M. Rubhausen, A. H. Castro Neto, B. Ozyilmaz, and T. Venkatesan, “A new route to graphene layers by selective laser ablation,” AIP Advances1, 022109 (2011).
[CrossRef]

Angewandte Chemie Int. Ed. (1)

K. G. Zhou, N-N. Mao, H-X. Wang, Y. Peng, and H-L. Zhang, “A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogue,” Angewandte Chemie Int. Ed.50, 10839–10842 (2011).
[CrossRef]

Ann. Chim. Phys. (1)

B. C. Brodie, “Sur le poids atomique du graphite,” Ann. Chim. Phys.59, 466 (1860).

Appl. Opt. (1)

Y. Bo, A. C. Geng, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design,” Appl. Opt.43, 2499–2503 (2006).
[CrossRef]

Appl. Phys. Express (1)

M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5, 112702 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

S. J. Beecher, R. R. Thomson, N. D. Psaila, Z. Sun, T. Hasan, A. G. Rozhin, A. C. Ferrari, and A. K. Kar, “320 fs pulse generation from an ultrafast laser inscribed waveguide laser mode-locked by a nanotube saturable absorber,” Appl. Phys. Lett.97, 111114 (2010).
[CrossRef]

M. Ghotbi, Z. Sun, A. Majchrowski, E. Michalski, I. V. Kityk, and M. Ebrahim-Zadeh, “Efficient third harmonic generation of microjoule picosecond pulses at 355 nm in BiB3O6,” Appl. Phys. Lett.89, 173124 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett.103, 221117 (2013).

B. V. Cunning, C. L. Brown, and D. Kielpinski, “Low-loss flake-graphene saturable absorber mirror for laser mode-locking at sub-200-fs pulse duration,” Appl. Phys. Lett.99, 261109 (2011).
[CrossRef]

Appl. Phys. Express (2)

Z. C. Luo, W. J. Cao, A. P. Luo, and W. C. Xu, “Optical deposition of graphene saturable absorber integrated in a fiber laser using a slot collimator for passive mode-locking,” Appl. Phys. Express5, 055103 (2012).
[CrossRef]

L. Li, Z. Ren, X. Chen, X. Zheng, and J. Bai, “Passively mode-locked radially polarized Nd-doped Yttrium Aluminum Garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express6, 082701 (2013).
[CrossRef]

Appl. Phys. Lett. (17)

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101, 153107 (2012).
[CrossRef]

A. Martinez and S. Yamashita, “10 GHz fundamental mode fiber laser using a graphene saturable absorber,” Appl. Phys. Lett.101, 041118 (2012).
[CrossRef]

W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Appl. Phys. Lett.96, 031106 (2010).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96, 051122 (2010).
[CrossRef]

A. A. Lagatsky, Z. Sun, T. S. Kulmala, S. Milana, F. Torrisi, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102, 013113 (2013).
[CrossRef]

C. Zhao, H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen, and D. Tang, “Ultra-short pulse generation by a topological insulator based saturable absorber,” Appl. Phys. Lett.101, 211106 (2012).
[CrossRef]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200fs pulse generation from a graphene mode locked fiber laser,” Appl. Phys. Lett.97, 203106 (2010).
[CrossRef]

D. Popa, Z. Sun, T. Hasan, F. Torrisi, F. Wang, and A. C. Ferrari, “Graphene Q-switched, tunable fiber laser,” Appl. Phys. Lett.98, 073106 (2011).
[CrossRef]

H. Kim, J. Cho, S.-Y. Jang, and Y.-W. Song, “Deformation-immunized optical deposition of graphene for ultrafast pulsed lasers,” Appl. Phys. Lett.98, 021104 (2011).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, V. Scardaci, W. I. Milne, I. H. White, F. Hennrich, and A. C. Ferrari, “L-band ultrafast fiber laser mode locked by carbon nanotubes,” Appl. Phys. Lett.93, 061114 (2008).
[CrossRef]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95, 253102 (2009).
[CrossRef]

J. Qi, X. Chen, W. Yu, D. Smirnov, N. H. Tolk, I. Miotkowski, H. Cao, Y. P. Chen, Y. Wu, S. Qiao, and Z. Jiang, “Ultrafast carrier and phonon dynamics in Bi2Se3crystals,” Appl. Phys. Lett.97, 182102 (2010).
[CrossRef]

W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, “Structure of chemically derived mono- and few-atomic-layer boron nitride sheets,” Appl. Phys. Lett.93, 223103 (2008).
[CrossRef]

P. E. Blake, W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett.91, 063124 (2007).
[CrossRef]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y.-Z. Wu, Y. Yang, and K.-J. Yang, “Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser,” Appl. Phys. Lett.99, 261107 (2011).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. G. Rozhin, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Nanosecond-pulse fiber lasers mode-locked with nanotubes,” Appl. Phys. Lett.95, 111108 (2009).
[CrossRef]

Arch. Biochem. (1)

M. K. Brakke, “Zonal separations by density-gradient centrifugation,” Arch. Biochem.45, 275–290 (1953).
[CrossRef] [PubMed]

Carbon (1)

S. Stankovich, D. A. Dikin, R. D. Piner, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon45, 1558–1565 (2007).
[CrossRef]

Chem Rev. (1)

J. W. Williams, K. E. Van Holde, R. L. Baldwin, and H. Fujita, “The theory of sedimentation analysis,” Chem Rev.58, 715–806 (1958).
[CrossRef]

Chem. Mater. (1)

A. O’Neill, U. Khan, and J. N. Coleman, “Preparation of high concentration dispersions of exfoliated MoS2with increased flake size,” Chem. Mater.24, 2414–2421 (2012).
[CrossRef]

Drug Chem Toxicol. (1)

H. M. Solomon, B. A. Burgess, G. L. Kennedy, and R. E. Staples, “1-Methyl-2-pyrrolidone (NMP): reproductive and developmental toxicity study by inhalation in the rat,” Drug Chem Toxicol.18, 271–293 (1995).
[CrossRef] [PubMed]

Electron. Lett. (1)

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhao, “Phase locking of fibre lasers by self-imaging resonator,” Electron. Lett.41, 171–173 (2005)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11, 567–577 (2005).
[CrossRef]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron., 10, 137–146 (2004).
[CrossRef]

IEEE Photonics Journal (1)

J. Wang, Z. Luo, M. Zhou, Z. Cai, H. Cheng, H. Xu, and W. Qi, “Evanescent-light deposition of graphene onto tapered fibers for passive Q-switch and mode-locker,” IEEE Photonics Journal4, 1295–1305 (2012).
[CrossRef]

IEEE Photonics (1)

P. Tang, X. Zhang, C. Zhao, Y. Wang, H. Zhang, D. Tang, and D. Fan, “Topological insulator: Bi2Te3for the passive Q-switching operation of an in-band pumped Er:YAG ceramic laser,” IEEE Photonics5, 1500707 (2013).
[CrossRef]

IEEE Photonics Journal (1)

L. Zhang, G. Wang, J. Hu, J. Wang, J. Fan, J. Wang, and Y. Feng, “Linearly polarized 1180nm Raman fiber laser mode locked by graphene,” IEEE Photonics Journal4, 1809–1815 (2012).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-assembled graphene membrane as an ultrafast mode-locker in an erbium fiber laser,” IEEE Photonics Technol. Lett.23, 1790–1792 (2011).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, “1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes,” IEEE Photonics Technol. Lett.17, 1623–1625 (2005).
[CrossRef]

Int. J. Photoenergy (1)

F. Bonaccorso, “Debundling and selective enrichment of swnts for applications in dye-sensitized solar cells,” Int. J. Photoenergy2010, 727134 (2010).
[CrossRef]

Int. Rev. Phys. Chem. (1)

E. Marseglia, “Transition metal dichalcogenides and their intercalates,” Int. Rev. Phys. Chem., 3, 177–216 (1983).
[CrossRef]

J. Am. Chem. Soc. (2)

M. Lotya, Y. Hernandez, V. Nicolosi, S. De, Z. Wang, T. McGovern, and J. N. Coleman, “Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions,” J. Am. Chem. Soc.131, 3611–3620 (2009).
[CrossRef] [PubMed]

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80, 1339 (1958).
[CrossRef]

J. Appl. Phys. (1)

N. Kumar, J. He, D. He, Y. Wang, and H. Zhao, “Charge carrier dynamics in bulk MoS2crystal studied by transient absorption microscopy,” J. Appl. Phys.113, 133702 (2013).
[CrossRef]

J. Electroanal. Chem (1)

S. Li, F. Zhu, H. Li, Q. Yue, and J. Liu, “Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties,” J. Electroanal. Chem., 703, 135–145 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Y. Wang, Z. Qu, J. Liu, and Y. Tsang, “Graphene oxide absorbers for Watt-level high power passive mode-locked Nd: GdVO4 laser operating at 1μm”, J. Lightwave Technol.30, 3259–3262 (2012).
[CrossRef]

J. Lightwave Technol. (2)

J. Mater. Chem. (1)

L. Ren, X. Qi, Y. Liu, G. Hao, L. Yang, J. Li, and J. Zhong, “Large-scale production of ultrathin bismuth telluride nanosheets by a hydrothermal intercalation and exfoliation route,” J. Mater. Chem.22, 4921–4926 (2012).
[CrossRef]

J. Mater. Chem. C (1)

G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J. Donegan, and J. N. Coleman, “Photoconductivity of solution-processed MoS2films,” J. Mater. Chem. C1, 6899–6904 (2013).
[CrossRef]

J. Phys. C (1)

J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, “Optical studies of metal-semiconductor transmutations produced by intercalation,” J. Phys. C, 4, L18 (1971).
[CrossRef]

J. Phys. Chem. C. (1)

F. Bonaccorso, T. Hasan, P. Tan, C. Sciascia, G. Privitera, G. Di Marco, P.G. Gucciardi, and A. C. Ferrari, “Density gradient ultracentrifugation of nanotubes: Interplay of bundling and surfactant encapsulation,” J. Phys. Chem. C.114, 17267–17285 (2010).
[CrossRef]

J. Phys. Chem. Lett. (1)

T. Seo Jung-Woo, A. A. Green, A. L. Antaris, and M. C. Hersam, “High-concentration aqueous dispersions of graphene using nonionic, biocompatible block copolymers,” J. Phys. Chem. Lett.2, 1004–1008 (2011).
[CrossRef]

J. Phys. Chem. (1)

J. B. Ifft and J. Vinograd, “The buoyant behavior of bovine serum mercaptalbumin in salt solutions at equilibrium in the ultracentrifuge. II. Net hydration, ion binding, and solvated molecular weight in various salt solutions,” J. Phys. Chem.70, 2814–2822 (1966).
[CrossRef]

J. Phys. Chem. C (3)

F. Bonaccorso, M. Zerbetto, A. C. Ferrari, and V. Amendola, “Sorting nanoparticles by centrifugal field in clean media,” J. Phys. Chem. C117, 13217–13229 (2013).
[CrossRef]

A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, “Graphene dispersion and exfoliation in low boiling point solvents,” J. Phys. Chem. C115, 5422–5428 (2011).
[CrossRef]

Y. Lin, T. V. Williams, T-B. Xu, W. Cao, H. E. Elsayed-Ali, and J. W. Connell, “Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water,” J. Phys. Chem. C115, 2679–2685 (2011).
[CrossRef]

J. Phys. Chem. Lett. (1)

Y. Lin, T. V. Williams, and J. W. Connell, “Soluble, exfoliated hexagonal boron nitride nanosheets,” J. Phys. Chem. Lett.1, 277–283 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, and S. Y. Set, “Mode-locked fiber lasers using adjustable saturable absorption in vertically aligned carbon nanotubes,” Jpn. J. Appl. Phys. Part 2 45, L17–L19 (2006).
[CrossRef]

Korean J. Chem. Eng. (1)

I. S. Khattab, F. Bandarkar, M. A. Fakhree, and A. Jouyban, “Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K” Korean J. Chem. Eng., 29, 812–817 (2012).
[CrossRef]

Langmuir (3)

U. Khan, H. Porwal, A. O’Neill, K. Nawaz, P. May, and J. N. Coleman, “Solvent-exfoliated graphene at extremely high concentration,” Langmuir, 27, 9077–9082 (2011).
[CrossRef] [PubMed]

S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, “Wettability and surface free energy of graphene films,” Langmuir25, 11078–11081 (2009).
[CrossRef] [PubMed]

J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascon, “Graphene oxide dispersions in organic solvents,” Langmuir24, 10560–10564 (2008).
[CrossRef] [PubMed]

Laser Phys. Lett. (1)

J. Lee, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A Q-switched, mode-locked fibe laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10, 035103 (2013).
[CrossRef]

Laser Phys. (4)

L. Zhang, Y. Wang, H. Yu, S. Zhang, W. Hou, X. Lin, and J. Li, “High power passively mode-locked Nd:YVO4 laser using graphene oxide as a saturable absorber,” Laser Phys.21, 2072–2075 (2011).
[CrossRef]

J. Q. Zhao, Y. G. Wang, P. G. Yan, S. C. Ruan, G. L. Zhang, H. Q. Li, and Y. H. Tsang, “An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses,” Laser Phys.23, 075105 (2013).
[CrossRef]

M. C. Paul, G. Sobon, J. Sotor, R. Kozinski, L. Lipinska, and M. Pal, “A graphene-based mode-locked nano-engineered zirconia-yttria-aluminosilicate glass-based erbium-doped fiber laser,” Laser Phys.23, 035110 (2013).
[CrossRef]

F. Chao, L. Jie, W. Yonggang, Z. Lihe, S. Liangbi, and X. Jun, “An Yb3+-doped Lu2SiO5mode-locked laser using a reflective graphene oxide absorber,” Laser Phys.23, 065802 (2013).
[CrossRef]

Laser Phys. Lett. (5)

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3laser,” Laser Phys. Lett.9, 15–19 (2012).
[CrossRef]

Z. Q. Luo, J. Z. Wang, M. Zhou, Z. P. Cai, and C. C. Ye, “Multiwavelength mode-locked erbium-doped fiber laser based on the interaction of graphene and fiber-taper evanescent field,” Laser Phys. Lett.9, 229–233 (2012).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12um Raman laser using carbon nanotubes,” Laser Phys. Lett.10, 015101 (2013).
[CrossRef]

E. J. R. Kelleher, J. C. Travers, Z. Sun, A. C. Ferrari, K. M. Golant, S. V. Popov, and J. R. Taylor, “Bismuth fiber integrated laser mode-locked by carbon nanotubes,” Laser Phys. Lett.7, 790–794 (2010).
[CrossRef]

X. H. Li, Y. G. Wang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “All-normal-dispersion passively mode-locked Yb-doped fiber ring laser based on a graphene oxide,” Laser Phys. Lett.10, 075108 (2013).
[CrossRef]

Macromolecules (1)

S. H. Kang, J. D. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, “A hyperbranched aromatic fluoropolyester for photonic applications,” Macromolecules36, 4355–4359 (2003).
[CrossRef]

Mater. Today (1)

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15, 564–589 (2012).
[CrossRef]

Nano Lett. (9)

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett.10, 1271–1275 (2010).
[CrossRef] [PubMed]

A. A. Green and M. C. Hersam, “Solution phase production of graphene with controlled thickness via density differentiation,” Nano Lett.9, 4031–4036 (2009).
[CrossRef] [PubMed]

M. Hajlaoui, E. Papalazarou, D. Boschetto, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti, and M. Marsi, “Ultrafast surface carrier dynamics in the topological insulator Bi2Te3,” Nano Lett.12, 3532–3536 (2012).
[CrossRef] [PubMed]

J. Mertens, A. L. Eiden, J. Aizpurua, A. C. Ferrari, and J. J. Baumberg, “Controlling subnanometer gaps in plasmonic dimers using graphene,” Nano Lett.13, 5033–5038 (2013).
[CrossRef] [PubMed]

S. Essig, C. W. Marquardt, A. Vijayaraghavan, M. Ganzhorn, S. Dehm, F. Hennrich, F. Ou, A. A. Green, F. Bonaccorso, H. v. Lohneysen, M. M. Kappes, P. Ajayan, M.C. Hersam, A.C. Ferrari, and R. Krupke, “Phonon-assisted electroluminescence from metallic nanotubes and graphene,” Nano Lett.10, 1589–1594 (2010).
[CrossRef] [PubMed]

G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett.11, 5111–5116 (2012).
[CrossRef]

X. Wang, L. Zhi, and K. Mullen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8, 323–327 (2007).
[CrossRef] [PubMed]

M. S. Arnold, S. I. Stupp, and M. C. Hersam, “Enrichment of single-walled carbon nanotubes by diameter in density gradients,” Nano Lett.5, 713–718 (2005).
[CrossRef] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7, 2711–2717 (2007).
[CrossRef] [PubMed]

Nano Res. (3)

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, and A. C. Ferrari, “A Stable, wideband tunable, near transform-limited, graphene mode locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, “Nano-graphene oxide for cellular imaging and drug delivery,” Nano Res.1, 203–212 (2008).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, F. Wang, A. Rozhin, I. White, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3, 653–660 (2010).
[CrossRef]

Nature Comm. (1)

U. Halim, C. R. Zheng, Y. Chen, S. Jiang, R. Cheng, Y. Huang, and X. Duan, “A rational design of cosolvent exfoliation of layered materials by directly probing liquid-solid interaction,” Nature Comm.4, 2213 (2013).
[CrossRef]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424, 831–838 (2003).
[CrossRef] [PubMed]

Nature Chem. (1)

H. Peng, W. Dang, J. Cao, Y. Chen, D. Wu, W. Zheng, H. Li, Z-X. Shen, and Z. Liu, “Topological insulator nanostructures for near-infrared transparent flexible electrodes,” Nature Chem.4, 281–286 (2012).
[CrossRef]

Nature Nanotech. (3)

Y. Hernandez, V. Nicolosi, F. M. Blighe, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite,” Nature Nanotech.3, 563–568 (2008).
[CrossRef]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech.3, 738–742 (2008).
[CrossRef]

M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nature Nanotech.1, 60–65 (2006).
[CrossRef]

Nature Photon. (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon.4, 611–622 (2010).
[CrossRef]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nature Photon.7, 842–845 (2013).
[CrossRef]

Z. Sun and A. C. Ferrari, “Fibre sources in the deep ultraviolet,” Nature Photon.5, 446–447 (2011).
[CrossRef]

New J. Phys. (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications,” New J. Phys.6, 177 (2004).
[CrossRef]

Opt. Commun. (2)

G. L. Wang, A. C. Geng, Y. Bo, Z. Y. Xu, X. Yuan, X. Q. Wang, and D. Z. Shen, “28.4 W 266 nm ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser,” Opt. Commun.259, 820–822 (2006).
[CrossRef]

H. Q. Li, H. B. Zhang, Z. Bao, X. C. Lin, G. L. Wang, W. Hou, R. N. Li, D. F. Cui, and Z. Y. Xu, “High-power nanosecond optical parametric oscillator based on a long LiB3O5crystal,” Opt. Commun.232, 411–415 (2004).
[CrossRef]

Opt. Express (5)

Z. Sun, M. Ghotbi, and M. Ebrahim-Zadeh, “Widely tunable picosecond optical parametric generation and amplification in BiB3O6,” Opt. Express15, 4139–4148 (2007).
[CrossRef] [PubMed]

R. Mary, G. Brown, S. J. Beecher, F. Torrisi, S. Milana, D. Popa, T. Hasan, Z. Sun, E. Lidorikis, S. Ohara, A. C. Ferrari, and A. K. Kar, “1.5 GHz picosecond pulse generation from a monolithic waveguide laser with a graphene-film saturable output coupler,” Opt. Express21, 7943–7950 (2013).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser,” Opt. Express20, 19463–19473 (2012).
[CrossRef] [PubMed]

Y.-H. Lin, C.-Y. Yang, J.-H. Liou, C.-P. Yu, and G.-R. Lin, “Using graphene nano-particle embedded in photonic crystal fiber for evanescent wave mode-locking of fiber laser,” Opt. Express21, 16763–16776 (2013).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express21, 23261–23271 (2013).
[CrossRef] [PubMed]

Opt. Commun. (5)

B. Fu, L. L. Gui, W. Zhang, X. S. Xiao, H. W. Zhu, and C. X. Yang, “Passive harmonic mode locking in erbium-doped fiber laser with graphene saturable absorber,” Opt. Commun.286, 304–308 (2013).
[CrossRef]

Y. Wang, H. Chen, W. Hsieh, and Y. H. Tsanga, “Mode-locked Nd:GdVO4laser with graphene oxide/polyvinyl alcohol composite material absorber as well as an output coupler,” Opt. Commun.289, 119–122 (2013).
[CrossRef]

C. Feng, Y. Wang, J. Liu, Y. H. Tsang, Y. Song, and Z. Yu, “3W high-power laser passively mode-locked by graphene oxide saturable absorber,” Opt. Commun.298–299, 168–170 (2013).
[CrossRef]

J. Xu, S. Wu, J. Liu, Q. Wang, Q.-H. Yang, and P. Wang, “Nanosecond-pulsed erbium-doped fiber lasers with graphene saturable absorber,” Opt. Commun.285, 4466–4469 (2012).
[CrossRef]

Z. P. Sun, R. N. Li, B. Yong, X. D. Yang, Z. Ying, G. L. Wang, W. L. Zhao, H. B. Zhang, H. Wei, D. F. Cui, and Z. Y. Xu, “Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,” Opt. Commun.241, 167–172 (2004).
[CrossRef]

Opt. Express (14)

Z. P. Sun, R. N. Li, Y. Bo, W. Hou, H. B. Zhang, D. F. Cui, and Z. Y. Xu, “Generation of 4.3-W coherent blue light by frequency-tripling of a side-pumped Nd:YAG laser in LBO crystals,” Opt. Express12, 6428–6433 (2004).
[CrossRef] [PubMed]

L. Guo, W. Hou, Z. Y. Xu, Y. G. Wang, and X. Y. Ma, “Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror,” Opt. Express13, 4085–4089 (2005).
[CrossRef] [PubMed]

S. Y. Choi, D. K. Cho, Y.-W. Song, K. Oh, K. Kim, F. Rotermund, and D.-I. Yeom, “Graphene-filled hollow optical fiber saturable absorber for efficient soliton fiber laser mode-locking”, Opt. Express20, 5652–5657 (2012).
[CrossRef] [PubMed]

J. K. Lim, K. Knabe, K. A. Tillman, W. Neely, Y. S. Wang, R. Amezcua-Correa, F. Couny, P. S. Light, F. Benabid, J. C. Knight, K. L. Corwin, J. W. Nicholson, and B. R. Washburn, “A phase-stabilized carbon nanotube fiber laser frequency comb,” Opt. Express17, 14115–14120 (2009).
[CrossRef] [PubMed]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18, 23054–23061 (2010).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20, 15474–15480 (2012).
[CrossRef] [PubMed]

Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in graphene,” Opt. Express20, 23201–23214 (2012).
[CrossRef] [PubMed]

J. Xu, S. Wu, H. Li, J. Liu, R. Sun, F. Tan, Q.-H. Yang, and P. Wang, “Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser,” Opt. Express20, 23653–23658 (2012).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20, 25077–25084 (2012).
[CrossRef] [PubMed]

C. Zhao, Y. Zou, Y. Chen, Z. Wang, S. Lu, H. Zhang, S. Wen, and D. Tang, “Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3as a mode locker,” Opt. Express20, 27888–27895 (2012).
[CrossRef] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi2Se3,” Opt. Express21, 2072–2082 (2012).
[CrossRef]

Q. Sheng, M. Feng, W. Xin, Z. Liu, and J. Tian, “Actively manipulation of operation states in passively pulsed fiber lasers by using graphene saturable absorber on microfiber,” Opt. Express21, 14859–14866 (2013).
[CrossRef] [PubMed]

Y. Cui and X. Liu, “Graphene and nanotube mode-locked fiber laser emitting dissipative and conventional solitons,” Opt. Express21, 18969–18974 (2013).
[CrossRef] [PubMed]

M. Jung, J. Koo, J. Park, Y.-W. Song, Y. M. Jhon, K. Lee, S. Lee, and J. H. Lee, “Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber,” Opt. Express21, 20062–20072 (2013).
[CrossRef] [PubMed]

Opt. Lett. (8)

J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett.36, 1948–1950 (2011).
[CrossRef] [PubMed]

Z.-b. Liu, X. He, and D. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36, 3024–3026 (2011).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

E. J. R. Kelleher, J. C. Travers, E. P. Ippen, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Generation and direct measurement of giant chirp in a passively mode-locked laser,” Opt. Lett.34, 3526–3528 (2009).
[CrossRef] [PubMed]

Q. J. Peng, Z. P. Sun, Y. H. Chen, L. Guo, Y. Bo, X. D. Yang, and Z. Y. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett.30, 1485–1487 (2005).
[CrossRef] [PubMed]

G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, “High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO:sPPLT,” Opt. Lett.32, 400–402 (2007).
[CrossRef] [PubMed]

X. Y. He, Z. B. Liu, and D. N. Wang, “Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating,” Opt. Lett.37, 2394–2396 (2012).
[CrossRef] [PubMed]

J.-L. Xu, X.-L. Li, J.-L. He, X.-P. Hao, Y. Yang, Y.-Z. Wu, S.-D. Liu, and B.-T. Zhang, “Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers,” Opt. Lett.37, 2652–2654 (2012).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

T. Kampfrath, L. Perfetti, C. Frischkorn, and M. Wolf, “Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite,” Phys. Rev. Lett.95, 187403 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. Sun, Z. Wu, C. Divin, P. N. First, and T. B. Norris, “Ultrafast relaxation of Dirac fermions in graphene using optical differential transmission spectroscopy,” Phys. Rev. Lett.101, 157402 (2008).
[CrossRef]

Phys. Rev. B (1)

V. G. Kravets, A. N. Grigorenko, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B81, 155413 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, and J. Robertson, “Electronic transport and hot phonons in carbon nanotubes,” Phys. Rev. Lett.95, 236802 (2005).
[CrossRef]

J. Gonzalez, F. Guinea, and M. Vozmediano, “Quasiparticle lifetime in graphite,” Phys. Rev. Lett.77, 3589 (1996).
[CrossRef]

M. Breusing and T. Elsaesser, “Ultrafast carrier dynamics in graphite,” Phys. Rev. Lett.102, 086809 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, “Solution-phase exfoliation of graphite for ultrafast photonics,” Phys. Status Solidi B247, 2953–2957 (2010).
[CrossRef]

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44, 1082–1091 (2012).
[CrossRef]

PNAS (1)

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS102, 10451–10453 (2005).
[CrossRef] [PubMed]

Proc. IEEE (1)

A. Nathan, A. Ahnood, Y. Suzuki, P. Hiralal, M.T. Cole, F. Bonaccorso, T. Hasan, L. Garcia-Gancedo, P. Andrew, S. Hoffman, D.P. Chu, A.J. Flewitt, T. Wilkinson, A.C. Ferrari, M.J. Kelly, J. Robertson, G.A. Amaratunga, and W.I. Milne, “Flexible electronics: the next ubiquitous platform,” Proc. IEEE100, 1486–1517 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

M. Hasan and C. Kane, “Topological insulators,” Rev. Mod. Phys.82, 3045–3067 (2010).
[CrossRef]

Sci. Rep. (2)

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep.3, 2718 (2013).
[PubMed]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep.3, 3223 (2013).
[CrossRef] [PubMed]

Science (2)

J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, T. Hallam, J. J. Boland, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, “Two-dimensional nanosheets produced by liquid exfoliation of layered materials,” Science331, 568–571 (2011).
[CrossRef] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines transparency of graphene,” Science320, 1308(2008).
[CrossRef]

Solid State Commun. (1)

A. Shukla, R. Kumar, J. Mazher, and A. Balan, “Graphene made easy: high quality, large-area samples,” Solid State Commun.149, 718–721 (2009).
[CrossRef]

Solid State Ionics (1)

F. Fievet, J. P. Lagier, and M. Figlarz, “Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles,” Solid State Ionics, 32, 198–205 (1989).
[CrossRef]

Other (11)

Z. Sun, X. Lin, H. Yu, T. Hasan, F. Torrisi, L. Zhang, L. Sun, L. Guo, W. Hou, J. Li, and A. Ferrari, “High-power ultrafast solid-state laser using graphene based saturable absorber,” in The Conference on Lasers and Electro-Optics (Baltimore, US, 2011), Paper JWA79.

T. J. Mason, Sonochemistry (Oxford University, 1999).

J. Israelachvili, Intermolecular and Surface Force (Academic, 2011).

http://echa.europa.eu/it/candidate-list-table

T. Hasan, V. Scardaci, P. H. Tan, F. Bonaccorso, A. G. Rozhin, Z. Sun, and A. C. Ferrari, “Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics,” in Molecular- and Nano-Tubes; O. Hayden and K. Nielsch, eds. (Springer Science and Business Media, 2011), pp. 279–354.

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Optical pump-probe studies of carrier dynamics in few-layer MoS2,” arXiv:1110.6643 (2011).

R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, “Ultrafast and spatially resolved studies of charge carriers in atomically-thin molybdenum disulfide,” arXiv:1206.6055 (2012).

T. Svedberg and K. O. Pedersen, The Ultracentrifuge (Oxford Univ. Press, 1940).

F. Bernard, H. Zhang, S. P. Gorza, and P. Emplit, “Towards mode-locked fiber laser using topological insulators,” Nonlinear Photonics, OSA Tech. Dig., Colorado Springs, CO, USA, 2012, Paper NTh1A.5.

D. R. Lide, Handbook of Chemistry and Physics (CRC Press Inc., 2005).

C.A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. Kulmala, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser mode-locked by a graphene-integrated distributed Bragg reflector”, arXiv:1310.2132(2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1:
Fig. 1:

Crystal and band structure of (a) Graphene, (b) MoS2 and (c) Bi2Te3. For Bi2Te3 the shaded regions represent bulk states while the red dashed lines are surface states.

Fig. 2:
Fig. 2:

Liquid phase exfoliation of LMs.(a) Starting material (e.g., graphite), (b) chemical wet dispersion, (c) ultrasonication and (d) final dispersion after the ultracentrifugation process.

Fig. 3:
Fig. 3:

Typical GSA mode-locked fiber laser: (a) integrated GSA device. (b) laser setup. WDM: wavelength division multiplexer; (c) pulse duration [160] (d) Tunable fiber lasers [10].

Tables (1)

Tables Icon

Table 1: Representative output performance of mode-locked lasers using 2d crystals fabricated by solution processing method. T: transmissive type, R: reflective type. PM: Polyol method. EDFL, YDFL and TDFL: Erbium-, Ytterbium- and Thulium- doped fiber lasers, respectively.

Metrics