Abstract

Indium tin oxide (ITO) films with various thicknesses are deposited on glass substrates using a DC magnetron sputtering technique. The microstructure and chemical composition of the sputtered samples are examined by scanning electron microscopy (SEM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS). Two-layer and three-layer optical models of the sputtered ITO films are constructed for fitting the experimental results of the spectroscopic ellipsometry. The results obtained from the two models for the resistivity, carrier density and carrier mobility are compared with those obtained via Hall effect measurements. Finally, the three-layer optical model is used to evaluate the refractive index and extinction coefficient spectra of the various samples. In general, the present results show that the three-layer model, in which the transition layer between the ITO film and the glass substrate is included, provides a better approximation of the SE results than the two-layer model. However, both models yield a reasonable estimate of the Hall resistivity. The results obtained using the three-layer model show that the carrier density and carrier mobility in the bulk layer are lower and higher, respectively, than those in the transition layer. In addition, it is shown that the refractive index of the bulk layer is lower than that of the transition layer in the UV and visible spectrum. Moreover, the extinction coefficient of the transition layer is significantly higher than that of the bulk layer in the near IR-region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and application to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
    [CrossRef]
  2. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
    [CrossRef]
  3. A. N. Banerjee and K. K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films,” Prog. Cryst. Growth Ch.50(1-3), 52–105 (2005).
    [CrossRef]
  4. H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
    [CrossRef]
  5. Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions,” Thin Solid Films467(1-2), 36–42 (2004).
    [CrossRef]
  6. M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microsturcture and Etching Properties of Sputtered Indium-Tin Oxide (ITO),” Phys. Status Solidi123(2), 461–472 (1991).
    [CrossRef]
  7. A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
    [CrossRef]
  8. M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
    [CrossRef]
  9. M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
    [CrossRef]
  10. S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
    [CrossRef]
  11. R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films313–314, 394–397 (1998).
    [CrossRef]
  12. Y. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3: Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109 (2005).
    [CrossRef]
  13. H. Fujiwara, Spectroscopic Ellipsometry - Principle and Application (John Wiley and Sons, 2006), Chap. 4.
  14. Z. Qiao, R. Latz, and D. Mergal, “Thickness dependence of In2O3: Sn film growth,” Thin Solid Films446(1-2), 250–258 (2004).
    [CrossRef]
  15. S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys.300(1-3), 285–293 (2004).
    [CrossRef]
  16. H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
    [CrossRef]
  17. S. Z. Tehrani, W. L. Lim, and L. Lee, “Correction factors for films resistivity measurement,” Measurement45(3), 219–225 (2012).
    [CrossRef]
  18. R. Clanget, “Ionized impurity scattering in degenerate In2O3,” Appl. Phys. (Berl.)2(5), 247–256 (1973).
    [CrossRef]
  19. K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films516(14), 4620–4627 (2008).
    [CrossRef]
  20. Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
    [CrossRef]
  21. E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
    [CrossRef]
  22. C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci.171(1-2), 151–156 (2001).
    [CrossRef]
  23. M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
    [CrossRef]

2012 (1)

S. Z. Tehrani, W. L. Lim, and L. Lee, “Correction factors for films resistivity measurement,” Measurement45(3), 219–225 (2012).
[CrossRef]

2009 (2)

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

2008 (1)

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films516(14), 4620–4627 (2008).
[CrossRef]

2007 (1)

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

2005 (2)

A. N. Banerjee and K. K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films,” Prog. Cryst. Growth Ch.50(1-3), 52–105 (2005).
[CrossRef]

Y. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3: Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109 (2005).
[CrossRef]

2004 (4)

Z. Qiao, R. Latz, and D. Mergal, “Thickness dependence of In2O3: Sn film growth,” Thin Solid Films446(1-2), 250–258 (2004).
[CrossRef]

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys.300(1-3), 285–293 (2004).
[CrossRef]

Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions,” Thin Solid Films467(1-2), 36–42 (2004).
[CrossRef]

A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
[CrossRef]

2002 (2)

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

2001 (2)

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci.171(1-2), 151–156 (2001).
[CrossRef]

2000 (1)

Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
[CrossRef]

1999 (1)

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

1998 (2)

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
[CrossRef]

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films313–314, 394–397 (1998).
[CrossRef]

1991 (1)

M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microsturcture and Etching Properties of Sputtered Indium-Tin Oxide (ITO),” Phys. Status Solidi123(2), 461–472 (1991).
[CrossRef]

1986 (1)

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and application to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

1973 (1)

R. Clanget, “Ionized impurity scattering in degenerate In2O3,” Appl. Phys. (Berl.)2(5), 247–256 (1973).
[CrossRef]

Amassian, A.

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

Ban, T.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
[CrossRef]

Banerjee, A. N.

A. N. Banerjee and K. K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films,” Prog. Cryst. Growth Ch.50(1-3), 52–105 (2005).
[CrossRef]

Barreca, D.

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

Bartolino, R.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

Brewer, S. H.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys.300(1-3), 285–293 (2004).
[CrossRef]

Bruno, G.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

Capezzuto, P.

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Chattopadhyay, K. K.

A. N. Banerjee and K. K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films,” Prog. Cryst. Growth Ch.50(1-3), 52–105 (2005).
[CrossRef]

Chrisey, D. B.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Ciuchi, F.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

Clanget, R.

R. Clanget, “Ionized impurity scattering in degenerate In2O3,” Appl. Phys. (Berl.)2(5), 247–256 (1973).
[CrossRef]

D’Elia, S.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

De Rosa, R.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Dudek, M.

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

Ellmer, K.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films516(14), 4620–4627 (2008).
[CrossRef]

Franzen, S.

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys.300(1-3), 285–293 (2004).
[CrossRef]

Fujiwara, Y. H.

Y. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3: Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109 (2005).
[CrossRef]

Giangregorio, M.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Gilmore, C. M.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Granqvist, C. G.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and application to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

Hamberg, I.

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and application to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

Hoheisel, M.

M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microsturcture and Etching Properties of Sputtered Indium-Tin Oxide (ITO),” Phys. Status Solidi123(2), 461–472 (1991).
[CrossRef]

Horwitz, J. S.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Hsu, J. C.

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci.171(1-2), 151–156 (2001).
[CrossRef]

Inoue, K.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Ito, N.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Jung, Y. S.

Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions,” Thin Solid Films467(1-2), 36–42 (2004).
[CrossRef]

Kafafi, Z. H.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Kaijo, A.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Kawashima, T.

Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
[CrossRef]

Kim, H.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Klemberg-Sapieha, J. E.

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

Kolitsch, A.

A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
[CrossRef]

Kondo, M.

Y. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3: Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109 (2005).
[CrossRef]

Koshi-ishi, R.

Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
[CrossRef]

Latz, R.

Z. Qiao, R. Latz, and D. Mergal, “Thickness dependence of In2O3: Sn film growth,” Thin Solid Films446(1-2), 250–258 (2004).
[CrossRef]

Lee, C. C.

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci.171(1-2), 151–156 (2001).
[CrossRef]

Lee, L.

S. Z. Tehrani, W. L. Lim, and L. Lee, “Correction factors for films resistivity measurement,” Measurement45(3), 219–225 (2012).
[CrossRef]

Lim, W. L.

S. Z. Tehrani, W. L. Lim, and L. Lee, “Correction factors for films resistivity measurement,” Measurement45(3), 219–225 (2012).
[CrossRef]

Liu, H. D.

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

Losurdo, M.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

Martinu, L.

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

Mattoussi, H.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Mergal, D.

Z. Qiao, R. Latz, and D. Mergal, “Thickness dependence of In2O3: Sn film growth,” Thin Solid Films446(1-2), 250–258 (2004).
[CrossRef]

Mientus, R.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films516(14), 4620–4627 (2008).
[CrossRef]

Mitwalsky, A.

M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microsturcture and Etching Properties of Sputtered Indium-Tin Oxide (ITO),” Phys. Status Solidi123(2), 461–472 (1991).
[CrossRef]

Moller, W.

A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
[CrossRef]

Mrotzek, C.

M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microsturcture and Etching Properties of Sputtered Indium-Tin Oxide (ITO),” Phys. Status Solidi123(2), 461–472 (1991).
[CrossRef]

Mruarka, S. P.

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

Murata, H.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Nishimura, E.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Ohsako, J.

Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
[CrossRef]

Ohya, Y.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
[CrossRef]

Pique´, A.

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

Plá, J.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Qiao, Z.

Z. Qiao, R. Latz, and D. Mergal, “Thickness dependence of In2O3: Sn film growth,” Thin Solid Films446(1-2), 250–258 (2004).
[CrossRef]

Ramantath, G.

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

Rizzoli, R.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Roca, F.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Rogozin, A. I.

A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
[CrossRef]

Sasabayashi, T.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Sato, Y.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Scaramuzza, N.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

Shigesato, Y.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
[CrossRef]

Strangi, G.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

Summonte, C.

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Synowicki, R. A.

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films313–314, 394–397 (1998).
[CrossRef]

Tahar, R. B. H.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
[CrossRef]

Takahashi, Y.

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
[CrossRef]

Tehrani, S. Z.

S. Z. Tehrani, W. L. Lim, and L. Lee, “Correction factors for films resistivity measurement,” Measurement45(3), 219–225 (2012).
[CrossRef]

Tondello, E.

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

Utsumi, K.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Versace, C.

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

Vinnichenko, M. V.

A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
[CrossRef]

Wang, G. C.

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

Wong, D. H.

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci.171(1-2), 151–156 (2001).
[CrossRef]

Yano, K.

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Zabeida, O.

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

Zhao, Y. P.

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

Appl. Phys. (Berl.) (1)

R. Clanget, “Ionized impurity scattering in degenerate In2O3,” Appl. Phys. (Berl.)2(5), 247–256 (1973).
[CrossRef]

Appl. Surf. Sci. (2)

C. C. Lee, J. C. Hsu, and D. H. Wong, “The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering,” Appl. Surf. Sci.171(1-2), 151–156 (2001).
[CrossRef]

S. D’Elia, N. Scaramuzza, F. Ciuchi, C. Versace, G. Strangi, and R. Bartolino, “Ellipsometry investigation of the effects of annealing temperature on the optical properties of indium tin oxide thin films studied by Drude–Lorentz model,” Appl. Surf. Sci.255(16), 7203–7211 (2009).
[CrossRef]

Chem. Phys. (1)

S. H. Brewer and S. Franzen, “Calculation of the electronic and optical properties of indium tin oxide by density functional theory,” Chem. Phys.300(1-3), 285–293 (2004).
[CrossRef]

J. Appl. Phys. (3)

I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped In2O3 films: Basic optical properties and application to energy-efficient windows,” J. Appl. Phys.60(11), R123–R160 (1986).
[CrossRef]

R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, “Tin doped indium oxide thin films: Electrical properties,” J. Appl. Phys.83(5), 2631–2645 (1998).
[CrossRef]

H. Kim, C. M. Gilmore, A. Pique´, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,” J. Appl. Phys.86(11), 6451–6461 (1999).
[CrossRef]

J. Vac. Sci. Technol. (1)

A. I. Rogozin, M. V. Vinnichenko, A. Kolitsch, and W. Moller, “Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering,” J. Vac. Sci. Technol.22(2), 349–355 (2004).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Plá, and R. Rizzoli, “Parameterization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity,” J. Vac. Sci. Technol. A20(1), 37–42 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

E. Nishimura, T. Sasabayashi, N. Ito, Y. Sato, K. Utsumi, K. Yano, A. Kaijo, K. Inoue, and Y. Shigesato, “Structure and internal stress of tin-doped indium oxide and indium-zinc oxide films deposited by DC magnetron sputtering,” Jpn. J. Appl. Phys.46(12), 7806–7811 (2007).
[CrossRef]

Measurement (1)

S. Z. Tehrani, W. L. Lim, and L. Lee, “Correction factors for films resistivity measurement,” Measurement45(3), 219–225 (2012).
[CrossRef]

Phys. Rev. B (1)

Y. H. Fujiwara and M. Kondo, “Effects of carrier concentration on the dielectric function of ZnO:Ga and In2O3: Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption,” Phys. Rev. B71(7), 075109 (2005).
[CrossRef]

Phys. Status Solidi (1)

M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microsturcture and Etching Properties of Sputtered Indium-Tin Oxide (ITO),” Phys. Status Solidi123(2), 461–472 (1991).
[CrossRef]

Prog. Cryst. Growth Ch. (1)

A. N. Banerjee and K. K. Chattopadhyay, “Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films,” Prog. Cryst. Growth Ch.50(1-3), 52–105 (2005).
[CrossRef]

Surf. Coat. Tech. (1)

M. Losurdo, D. Barreca, P. Capezzuto, G. Bruno, and E. Tondello, “Interrelation between nanostructure and optical properties of oxide thin films by spectroscopic ellipsometry,” Surf. Coat. Tech.151–152, 2–8 (2002).
[CrossRef]

Thin Solid Films (6)

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films516(14), 4620–4627 (2008).
[CrossRef]

Y. S. Jung, “Spectroscopic ellipsometry studies on the optical constants of indium tin oxide films deposited under various sputtering conditions,” Thin Solid Films467(1-2), 36–42 (2004).
[CrossRef]

M. Dudek, A. Amassian, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, “Ion bombardment-induced enhancement of the properties of indium tin oxide films prepared by plasma-assisted reactive magnetron sputtering,” Thin Solid Films517(16), 4576–4582 (2009).
[CrossRef]

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films313–314, 394–397 (1998).
[CrossRef]

Z. Qiao, R. Latz, and D. Mergal, “Thickness dependence of In2O3: Sn film growth,” Thin Solid Films446(1-2), 250–258 (2004).
[CrossRef]

H. D. Liu, Y. P. Zhao, G. Ramantath, S. P. Mruarka, and G. C. Wang, “Thickness dependent electrical resistivity of ultrathin (<40nm) Cu films,” Thin Solid Films384(1), 151–156 (2001).
[CrossRef]

Vacuum (1)

Y. Shigesato, R. Koshi-ishi, T. Kawashima, and J. Ohsako, “Early stages of ITO deposition on glass or polymer substrates,” Vacuum59(2-3), 614–621 (2000).
[CrossRef]

Other (1)

H. Fujiwara, Spectroscopic Ellipsometry - Principle and Application (John Wiley and Sons, 2006), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Cross-sectional SEM images of Samples A, B and C. (b) XRD analysis results for Samples A, B and C. Note that the insets in Fig. 1(a) show the EDS analysis results for the corresponding ITO thin film.

Fig. 2
Fig. 2

Optical models and corresponding SE fitting results for: (a) two-layer optical model and (b) three-layer optical model for Sample C.

Fig. 3
Fig. 3

(a) Comparison of Hall effect measurement of sample resistivity (ρH) with estimated results obtained using two-layer model (ρ*S) and three-layer model (ρ*D). (b) Comparison of lump sum resistivity (ρ*D) with resistivities of bulk layer (ρ*D2) and transition layer (ρ*D1).

Fig. 4
Fig. 4

Comparison of estimated results and experimental results for carrier density (N) in: (a) transition layer and (b) bulk layer of ITO films. Note that NH represents the experimental Hall measurement value, while N*F, N*C and N*B represent the carrier densities estimated by the Fujiwara model, constant model and Brewer model, respectively. Note also that subscripts 1 and 2 refer to the transition layer and bulk layer, respectively.

Fig. 5
Fig. 5

Comparison of estimated results and experimental results for carrier mobility (μ) in: (a) transition layer and (b) bulk layer of ITO films. Note that μH represents the experimental Hall measurement value, while μ*C, μ*F and μ*B represent the carrier mobilities estimated by the constant model, Fujiwara model and Brewer model, respectively. Note also that subscripts 1 and 2 refer to the transition layer and bulk layer, respectively.

Fig. 6
Fig. 6

(a) Refractive index spectra and (b) extinction coefficient spectra of bulk layer and transition layer in Samples A, B and C. Note that L1 denotes the transition layer and L2 denotes the bulk layer.

Tables (2)

Tables Icon

Table 1 Fitting results obtained for three samples using two-layer and three-layer optical models, in which MSE and Ra represent mean square error and surface roughness, respectively.

Tables Icon

Table 2 Effective mass values for free electrons in bulk and transition layers as determined using constant model (m*C), Fujiwara model (m*F) and Brewer model (m*B).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε ω p 2 ω 2 +i ω τ ω + j=1 2 f j ω j 2 ω 0j 2 ω 2 +i γ j ω
ε(E)= ε A D E 2 +i B D E + j=1 2 A L E 0j 2 E 2 +i Γ L E
ρ D = B D A D ε 0
N=( A D )( m e * ε 0 ε e 2 )
μ= e B D m e *

Metrics