Abstract

The efficient and accurate fabrication of Microstructured optical fibers (MOFs) requires a practical understanding of the ‘draw process’ beyond what is achievable by trial and error, which requires the ability to predict the experimental drawing parameters needed to produce the desired final geometry. Our results show that the Fitt et al. fluid-mechanics model for describing the draw process of a single axisymmetric capillary fiber provides practical insights when applied to more complex multi-hole symmetric and asymmetric MOF geometries. By establishing a method to relate the multi-hole MOF geometry to a capillary and understanding how material temperature varies with the draw tower temperature profile, it was found that analytical equations given by the Fitt model could be used to predict the parameters necessary for the chosen structure. We show how this model provides a practical framework that contributes to the efficient and accurate fabrication of the desired MOF geometries by predicting suitable fiber draw conditions.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett.21, 1547–1549 (1996).
    [CrossRef] [PubMed]
  3. T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
    [CrossRef]
  4. W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
    [CrossRef] [PubMed]
  5. M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
    [CrossRef]
  6. S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17, 14053–15062 (2009).
    [CrossRef] [PubMed]
  7. N. A. Issa, “High numerical aperture in multimode microstructured optical fibers,” Appl. Opt.43, 6191–6197 (2004).
    [CrossRef] [PubMed]
  8. B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
    [CrossRef]
  9. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
    [CrossRef]
  10. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
    [CrossRef] [PubMed]
  11. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
    [CrossRef]
  12. S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
    [CrossRef]
  13. K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
    [CrossRef]
  14. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
    [CrossRef] [PubMed]
  15. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2, 304–320 (2012).
    [CrossRef]
  16. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
    [CrossRef]
  17. H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
    [CrossRef]
  18. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
    [CrossRef]
  19. P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
    [CrossRef]
  20. J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers – fundamentals and applications,” J. Am. Ceram. Soc.89, 2–12 (2006).
    [CrossRef]
  21. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19, 1441–1448 (2011).
    [CrossRef] [PubMed]
  22. S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).
  23. A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J.2, 620–629 (2010).
    [CrossRef]
  24. S. C. Xue, R. I. Tanner, G. W. Barton, R. Lwin, M. C. J. Large, and L. Poladian, “Fabrication of microstructured optical fibers – Part 1 & 2,” J. Lightwave Technol.23, 2245–2266 (2005).
    [CrossRef]
  25. G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
    [CrossRef]
  26. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
    [CrossRef]
  27. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
    [CrossRef]
  28. S. H. K. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Tran.40, 843–856 (1997).
    [CrossRef]
  29. R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol.24, 4304–4313 (2006).
    [CrossRef]
  30. C. Voyce, A. Fitt, and T. Monro, “Mathematical model of the spinning of microstructured fibres,” Opt. Express12, 5810–5820 (2004).
    [CrossRef] [PubMed]
  31. C. J. Voyce, A. D. Fitt, and T. M. Monro, “The mathematical modelling of rotating capillary tubes for holey-fibre manufacture,” J. Eng. Math.60, 69–87 (2008).
    [CrossRef]
  32. C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: The effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008).
    [CrossRef]
  33. C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol.27, 871–878 (2009).
    [CrossRef]
  34. G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).
  35. U. C. Paek and R. B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys.49, 4417–4422 (1978).
    [CrossRef]
  36. G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
    [CrossRef]
  37. K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
    [CrossRef]
  38. M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008).
    [CrossRef]
  39. Heraeus Quarzglas GmbH & Co. KG, http://heraeus-quarzglas.com/ , Pure Silica Rods for Specialty Fiber Applications, 1 (Heraeus,2012).
  40. E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
    [CrossRef] [PubMed]
  41. R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).
  42. G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982).
    [CrossRef]
  43. R. H. Doremus, “Viscosity of silica,” J. Appl. Phys.92, 7619–7629 (2002).
    [CrossRef]
  44. S. Roy Choudhury and Y. Jaluria, “Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,” J. Mater. Res.13, 494–503 (1998).
    [CrossRef]
  45. N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41, 18–22 (1958).
    [CrossRef]
  46. W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42, 6–10 (1959).
    [CrossRef]
  47. K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
    [CrossRef]
  48. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol.19, 1924–1931 (2001).
    [CrossRef]
  49. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
    [CrossRef] [PubMed]
  50. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
    [CrossRef]
  51. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
    [CrossRef]

2013 (2)

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

2012 (4)

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2, 304–320 (2012).
[CrossRef]

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

2011 (6)

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19, 1441–1448 (2011).
[CrossRef] [PubMed]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
[CrossRef] [PubMed]

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

2010 (5)

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
[CrossRef]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J.2, 620–629 (2010).
[CrossRef]

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

2009 (6)

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17, 14053–15062 (2009).
[CrossRef] [PubMed]

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol.27, 871–878 (2009).
[CrossRef]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

2008 (5)

M.-J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol.26, 1079–1092 (2008).
[CrossRef]

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “The mathematical modelling of rotating capillary tubes for holey-fibre manufacture,” J. Eng. Math.60, 69–87 (2008).
[CrossRef]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: The effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008).
[CrossRef]

2007 (2)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

2006 (3)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

R. M. Wynne, “A fabrication process for microstructured optical fibers,” J. Lightwave Technol.24, 4304–4313 (2006).
[CrossRef]

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers – fundamentals and applications,” J. Am. Ceram. Soc.89, 2–12 (2006).
[CrossRef]

2005 (1)

2004 (2)

2002 (2)

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
[CrossRef]

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys.92, 7619–7629 (2002).
[CrossRef]

2001 (1)

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

1998 (1)

S. Roy Choudhury and Y. Jaluria, “Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,” J. Mater. Res.13, 494–503 (1998).
[CrossRef]

1997 (1)

S. H. K. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Tran.40, 843–856 (1997).
[CrossRef]

1996 (1)

1994 (1)

S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).

1982 (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982).
[CrossRef]

1978 (1)

U. C. Paek and R. B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys.49, 4417–4422 (1978).
[CrossRef]

1973 (1)

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
[CrossRef]

1959 (1)

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42, 6–10 (1959).
[CrossRef]

1958 (1)

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41, 18–22 (1958).
[CrossRef]

Abbott, D.

Abell, A. D.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

Afshar V., S.

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17, 14053–15062 (2009).
[CrossRef] [PubMed]

Atakaramians, S.

Atkin, D. M.

Bailey, R.

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

Barton, G. W.

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Bigot, L.

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

Biriukov, A. S.

Birks, T. A.

Bise, R. T.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

Bjarklev, A.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers – fundamentals and applications,” J. Am. Ceram. Soc.89, 2–12 (2006).
[CrossRef]

Bottinga, Y.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982).
[CrossRef]

Bouazaoui, M.

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

Boussard-Plèdel, C.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Bouwmans, G.

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

Boyd, K.

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

Bureau, B.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Capoen, B.

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

Davis, C.

Delgado, A.

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

Desevedavy, F.

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Dianov, E. M.

Doremus, R. H.

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys.92, 7619–7629 (2002).
[CrossRef]

Du, H.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

Ebendorff-Heidepriem, H.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2, 304–320 (2012).
[CrossRef]

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17, 14053–15062 (2009).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).

Epple, P.

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

Fischer, B. M.

Fitt, A.

Fitt, A. D.

Foo, T. C.

François, A.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Fujimoto, K.

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

Furusawa, K.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol.19, 1924–1931 (2001).
[CrossRef]

Gauvreau, B.

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Guo, N.

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Hamzaoui, H. E.

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

Hassani, A.

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Hayes, J. R.

Hemming, A.

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

Heng, S.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Henry, P.

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

Henry, P. C.

R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).

Hirao, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Houizot, P.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Imamura, K.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
[CrossRef]

Issa, N. A.

Jaluria, Y.

S. Roy Choudhury and Y. Jaluria, “Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,” J. Mater. Res.13, 494–503 (1998).
[CrossRef]

S. H. K. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Tran.40, 843–856 (1997).
[CrossRef]

Kanka, J.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

Kasier, P.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
[CrossRef]

Khadri, D.

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Kingery, W. D.

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42, 6–10 (1959).
[CrossRef]

Knight, J. C.

Kosolapov, A. F.

Kostecki, R.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).

Krol, D.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Lægsgaard, J.

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers – fundamentals and applications,” J. Am. Ceram. Soc.89, 2–12 (2006).
[CrossRef]

Lancaster, D.

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

Large, M. C. J.

Lee, S. H. K.

S. H. K. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Tran.40, 843–856 (1997).
[CrossRef]

Li, M.-J.

Luzi, G.

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

Lwin, R.

Mair, R.

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

Marcatili, E. A. J.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
[CrossRef]

Mawardi, A.

A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J.2, 620–629 (2010).
[CrossRef]

McAdam, G.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

McNamara, P.

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

Miaoulis, I. N.

S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).

Miller, S. E.

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
[CrossRef]

Monro, T.

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

C. Voyce, A. Fitt, and T. Monro, “Mathematical model of the spinning of microstructured fibres,” Opt. Express12, 5810–5820 (2004).
[CrossRef] [PubMed]

Monro, T. M.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2, 304–320 (2012).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
[CrossRef] [PubMed]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

S. Atakaramians, S. Afshar V., H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express17, 14053–15062 (2009).
[CrossRef] [PubMed]

C. J. Voyce, A. D. Fitt, J. R. Hayes, and T. M. Monro, “Mathematical modeling of the self-pressurizing mechanism for microstructured fiber drawing,” J. Lightwave Technol.27, 871–878 (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: The effects of preform rotation,” J. Lightwave Technol.26, 791–798 (2008).
[CrossRef]

C. J. Voyce, A. D. Fitt, and T. M. Monro, “The mathematical modelling of rotating capillary tubes for holey-fibre manufacture,” J. Eng. Math.60, 69–87 (2008).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15, 15086–15092 (2007).
[CrossRef] [PubMed]

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol.19, 1924–1931 (2001).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).

Moore, R.

Mukasa, K.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
[CrossRef]

Munch, J.

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

Nagel, M.

Nguyen, M.-C.

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

Nolan, D. A.

Oermann, M.

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

Ottaway, D.

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

Paek, U. C.

U. C. Paek and R. B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys.49, 4417–4422 (1978).
[CrossRef]

Papamichael, H.

S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).

Parikh, N. M.

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41, 18–22 (1958).
[CrossRef]

Peterka, P.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

Pitchumani, R.

A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J.2, 620–629 (2010).
[CrossRef]

Please, C. P.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: capillary drawing,” J. Lightwave Technol.19, 1924–1931 (2001).
[CrossRef]

Plotnichenko, V. G.

Poladian, L.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
[CrossRef]

Pryamikov, A. D.

Rauh, C.

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

Razdobreev, I.

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
[CrossRef]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Richardson, K.

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Richet, P.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982).
[CrossRef]

Rosenberg, S. E.

S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).

Rouxel, T.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Roy Choudhury, S.

S. Roy Choudhury and Y. Jaluria, “Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,” J. Mater. Res.13, 494–503 (1998).
[CrossRef]

Runk, R. B.

U. C. Paek and R. B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys.49, 4417–4422 (1978).
[CrossRef]

Russell, P. S. J.

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
[CrossRef]

Sangleboeuf, J.-C.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Scharrer, M.

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Influence of surface tension and inner pressure on the process of fibre drawing,” J. Lightwave Technol.28, 1882–1888 (2010).
[CrossRef]

Schartner, E. P.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).

Semjonov, S. L.

Skorobogatiy, M.

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Takahashi, M.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
[CrossRef]

Tanner, R. I.

Troles, J.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Urbain, G.

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982).
[CrossRef]

Veitch, P.

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

Voyce, C.

Voyce, C. J.

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Warren-Smith, S. C.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express2, 1538–1547 (2012).
[CrossRef]

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express17, 18533–18542 (2009).
[CrossRef]

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
[CrossRef]

White, R. T.

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

Wynne, R. M.

Xue, S. C.

Yagi, T.

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
[CrossRef]

Yang, G.

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

Zhang, W. Q.

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
[CrossRef] [PubMed]

Zhu, Y.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem.80, 4269–4283 (2008).
[CrossRef] [PubMed]

Annu. Rev. Mater. Res. (1)

T. M. Monro and H. Ebendorff-Heidepriem, “Progress in microstructured optical fibers,” Annu. Rev. Mater. Res.36, 467–495 (2006).
[CrossRef]

Appl. Opt. (1)

Bell Sys. Tech. J. (1)

P. Kasier, E. A. J. Marcatili, and S. E. Miller, “A new optical fiber,” Bell Sys. Tech. J.52, 265–269 (1973).
[CrossRef]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett.35, 1188–1189 (1999).
[CrossRef]

Geochim. Cosmochim. Ac. (1)

G. Urbain, Y. Bottinga, and P. Richet, “Viscosity of liquid silica, silicates and alumino-silicates,” Geochim. Cosmochim. Ac.46, 1061–1072 (1982).
[CrossRef]

Glass Technol. (1)

S. E. Rosenberg, H. Papamichael, and I. N. Miaoulis, “A 2-dimensional analysis of the viscous problem of a glass preform during the optical-fiber drawing process,” Glass Technol.35, 260–264 (1994).

IEEE Photon. J. (1)

A. Mawardi and R. Pitchumani, “Optical fiber drawing process model using an analytical neck-down profile,” IEEE Photon. J.2, 620–629 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Oermann, H. Ebendorff-Heidepriem, D. Ottaway, D. Lancaster, P. Veitch, and T. Monro, “Extruded microstructured fiber lasers,” IEEE Photon. Technol. Lett.24, 578–580 (2012).
[CrossRef]

Int J. Chem. Reactor Eng. (1)

G. Luzi, P. Epple, M. Scharrer, K. Fujimoto, C. Rauh, and A. Delgado, “Asymptotic analysis of flow processes at drawing of single optical microfibres,” Int J. Chem. Reactor Eng.9A65(2011).

Int. J. Appl. Glass Sci. (1)

K. Richardson, D. Krol, and K. Hirao, “Glasses for photonic applications,” Int. J. Appl. Glass Sci.1, 74–86 (2010).
[CrossRef]

Int. J. Heat Mass Tran. (1)

S. H. K. Lee and Y. Jaluria, “Simulation of the transport processes in the neck-down region of a furnace drawn optical fiber,” Int. J. Heat Mass Tran.40, 843–856 (1997).
[CrossRef]

J. Appl. Phys. (1)

R. H. Doremus, “Viscosity of silica,” J. Appl. Phys.92, 7619–7629 (2002).
[CrossRef]

J. Am. Ceram. Soc. (4)

N. M. Parikh, “Effect of atmosphere on surface tension of glass,” J. Am. Ceram. Soc.41, 18–22 (1958).
[CrossRef]

W. D. Kingery, “Surface tension of some liquid oxides and their temperature coefficients,” J. Am. Ceram. Soc.42, 6–10 (1959).
[CrossRef]

G. Yang, T. Rouxel, J. Troles, B. Bureau, C. Boussard-Plèdel, P. Houizot, and J.-C. Sangleboeuf, “Viscosity of As2Se3 glass during the fiber drawing process,” J. Am. Ceram. Soc.94, 2408–2411 (2011).
[CrossRef]

J. Lægsgaard and A. Bjarklev, “Microstructured optical fibers – fundamentals and applications,” J. Am. Ceram. Soc.89, 2–12 (2006).
[CrossRef]

J. Appl. Phys. (1)

U. C. Paek and R. B. Runk, “Physical behavior of the neck-down region during furnace drawing of silica fibers,” J. Appl. Phys.49, 4417–4422 (1978).
[CrossRef]

J. Eng. Math. (2)

C. J. Voyce, A. D. Fitt, and T. M. Monro, “The mathematical modelling of rotating capillary tubes for holey-fibre manufacture,” J. Eng. Math.60, 69–87 (2008).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math.43, 201–227 (2002).
[CrossRef]

J. Lightwave Technol. (7)

J. Mater. Res. (1)

S. Roy Choudhury and Y. Jaluria, “Thermal transport due to material and gas flow in a furnace for drawing an optical fiber,” J. Mater. Res.13, 494–503 (1998).
[CrossRef]

J. Non-Cryst. Solids (1)

P. McNamara, D. Lancaster, R. Bailey, A. Hemming, P. Henry, and R. Mair, “A large core microstructured fluoride glass optical fibre for mid-infrared single-mode transmission,” J. Non-Cryst. Solids355, 1461–1467 (2009).
[CrossRef]

J. Opt. A. – Pure Appl. Op. (1)

B. Gauvreau, F. Desevedavy, N. Guo, D. Khadri, A. Hassani, and M. Skorobogatiy, “High numerical aperture polymer microstructured fiber with three super-wavelength bridges,” J. Opt. A. – Pure Appl. Op.11, 085102 (2009).
[CrossRef]

Key Eng. Mat. (1)

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, G. McAdam, C. Davis, and T. M. Monro, “Optical fibres for distributed corrosion sensing – architecture and characterisation,” Key Eng. Mat.558, 522–533 (2013).
[CrossRef]

Opt. Express (2)

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express17, 2646–2657 (2009).
[CrossRef] [PubMed]

W. Q. Zhang, H. Ebendorff-Heidepriem, T. M. Monro, and S. Afshar V., “Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber,” Opt. Express19, 21135–21144 (2011).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun.281, 55–60 (2008).
[CrossRef]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng.46010503 (2007).
[CrossRef]

Opt. Express (5)

Opt. Fiber Technol. (2)

K. Mukasa, K. Imamura, M. Takahashi, and T. Yagi, “Development of novel fibers for telecoms application,” Opt. Fiber Technol.16, 367–377 (2010).
[CrossRef]

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V., “Sensing with suspended-core optical fibers,” Opt. Fiber Technol.16, 343–356 (2010).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. Express (2)

H. E. Hamzaoui, L. Bigot, G. Bouwmans, I. Razdobreev, M. Bouazaoui, and B. Capoen, “From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route,” Opt. Mater. Express1, 234–242 (2011).
[CrossRef]

K. Boyd, H. Ebendorff-Heidepriem, T. M. Monro, and J. Munch, “Surface tension and viscosity measurement of optical glasses using a scanning CO2laser,” Opt. Mater. Express2, 1101–1110 (2012).
[CrossRef]

Opt. Mater. Express (2)

RSC Adv. (1)

S. Heng, M.-C. Nguyen, R. Kostecki, T. M. Monro, and A. D. Abell, “Nanoliter-scale, regenerable ion sensor: sensing with a surface functionalized microstructured optical fibre,” RSC Adv.3, 8308–8317 (2013).
[CrossRef]

Sensors (1)

E. P. Schartner, H. Ebendorff-Heidepriem, S. C. Warren-Smith, R. T. White, and T. M. Monro, “Driving down the detection limit in microstructured fiber-based chemical dip sensors,” Sensors11, 2961–2971 (2011).
[CrossRef] [PubMed]

Other (2)

R. Kostecki, E. P. Schartner, H. Ebendorff-Heidepriem, P. C. Henry, and T. M. Monro, “Fabrication of suspended and exposed core silica fibres for sensing applications,” ACOFT - 37th Australian Conference on Optical Fibre Technology (2012).

Heraeus Quarzglas GmbH & Co. KG, http://heraeus-quarzglas.com/ , Pure Silica Rods for Specialty Fiber Applications, 1 (Heraeus,2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Temperature profiles measured inside (small dots) Ø12 mm and (large dots) Ø20 mm rods at (blue) 1500 °C, (green) 1600 °C, and (orange) 1700 °C furnace temperatures. (b) Surface of 2×1 degree polynomial (Eq. (3)) fitted to the Ø12 mm results shown by green dots. The distance inside furnace was measured from the top of the furnace outer casing.

Fig. 2
Fig. 2

Experimental (red dots) and model (blue line) for a series of pressures (a) and a series of furnace temperatures (b). For the pressure series (a) the furnace temperature used was 2000 °C at pressures of 200, 400, 800, 1200, 1600, and 2000 Pa. For the temperature series (b), furnace temperatures of 1920, 1960, 2000, 2040, and 2080 °C were used with a fixed pressure of 1200 Pa. The temperature series (b) also includes the 1200 Pa result from the pressure series.

Fig. 3
Fig. 3

Draw tower data, showing (blue) the pressure applied to the holes of the preform, and (red) the draw speed which was set to automatically maintain a constant outside fiber diameter.

Fig. 4
Fig. 4

(a) Cross section of the preform fabricated from Ø12 mm F300HQ silica rod; and, microscope image of (b) the cane; and, scanning electron microscope images of (c) the silica suspended-core fiber cross section measured to be Ø270 μm with (d) and enlarged image of the holes and core having effective diameters of 40.5 μm and 1.7 μm respectively.

Fig. 5
Fig. 5

Scanning electron microscope (SEM) image of (a) a asymmetric silica exposed-core fiber; and a microscope image of (b) the cross section of a cane which was used in a two step (cane and sleeve) process to produce a asymmetric silica exposed-core fiber shown by SEM images (c); and, (d) an enlarged image of the core having an effective diameter of 1.7 μm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h 1 ( p 0 ) = exp ( β z 2 L P exp ( β z L ) ) [ h 10 exp ( P ) G 0 z exp ( β u 2 L + P exp ( β u L ) ) d u ] G = γ 2 μ W f , P = p 0 L 2 β μ W f , β = ln ( W d W f )
μ = 5.8 × 10 8 exp ( 515400 R T ) [ Pa . s ]
T m = 3634 + 43.71 ξ + 1.073 T f 0.1416 ξ 2 2.404 × 10 5 ξ T f
T m = 4704 + 51.79 ξ + 1.537 T f 0.1551 ξ 2 2.201 × 10 3 ξ T f
C = h 1 h 20 h 2 h 10
h 2 = h 20 exp ( β 2 ) ,
C ( p 0 ) = exp ( P exp ( β ) ) h 10 [ h 10 exp ( P ) G 0 z exp ( β u 2 L + P exp ( β u L ) ) d u ]

Metrics