Abstract

Measurements of electro-optic and dielectric properties in Zirconium (Zr)- doped lithium niobate (LN:Zr) crystals are performed as functions of the dopant concentration in the range 0.0-2.5 mol%. The clamped and unclamped electro-optic coefficients r222 of Zr-doped LN and the corresponding dielectric permittivity as well, have been experimentally determined and compared with the results obtained in undoped congruent LN crystals. We show that the electro-optic and dielectric properties present a kink around 2 mol% of zirconium which seems to be the “threshold” concentration required to strongly reduce the photorefractive effect. All reported results confirm that the LN:Zr is a very promising candidate for several non linear devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. McCannt, J. Pezytg, and P. Wilsen, “A versatile electronic light shutter composed of a high speed switching circuit coupled with a lithium niobate Pockels cell,” J. Phys. E Sci. Instrum.15(3), 322–324 (1982).
    [CrossRef]
  2. S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
    [CrossRef]
  3. E. Krätzig and O. F. Schirmer, “Photorefractive centers in electro-optic crystals,” in Photorefractive Materials and their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 1988), pp. 131-167.
  4. G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
    [CrossRef]
  5. T. Volk and M. Wöhlecke, in Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).
  6. D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
    [CrossRef]
  7. K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
    [CrossRef]
  8. G. Zhong, J. Jin, and Z. Wu, in Proceedings of the 11th International Quantum Electronics Conference IQEC ’80 (IEEE, 1980), p. 631.
  9. T. R. Volk, N. M. Rubinina, and M. Woehlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B11(9), 1681–1687 (1994).
    [CrossRef]
  10. Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
    [CrossRef]
  11. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
    [CrossRef]
  12. T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO(3):Zn crystal,” Opt. Lett.15(18), 996–998 (1990).
    [CrossRef] [PubMed]
  13. E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
    [CrossRef]
  14. L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
    [CrossRef]
  15. S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
    [CrossRef]
  16. M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
    [CrossRef]
  17. P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
    [CrossRef]
  18. P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express15(21), 14171–14176 (2007).
    [CrossRef] [PubMed]
  19. E. P. Kokanyan, “‘Hafnium-doped periodically poled lithium niobate crystals: Growth and photorefractive propertie,” Ferroelectrics341(1), 119–124 (2006).
    [CrossRef]
  20. A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).
  21. Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
    [CrossRef]
  22. H. Liu, Q. Liang, M. Zhu, W. Li, S. Liu, L. Zhang, S. Chen, Y. Kong, and J. Xu, “An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate,” Opt. Express19(3), 1743–1748 (2011).
    [CrossRef] [PubMed]
  23. N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
    [CrossRef]
  24. L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
    [CrossRef]
  25. M. Aillerie, N. Theofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B70(3), 317–334 (2000).
    [CrossRef]
  26. M. Abarkan, J. P. Salvestrini, M. Aillerie, and M. D. Fontana, “Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals,” Appl. Opt.42, 2346–2353 (2003).
    [CrossRef] [PubMed]
  27. G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
    [CrossRef]
  28. F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
    [CrossRef]
  29. B. C. Grabmaier and F. Otto, “Growth and investigation in MgO-doped LiNbO3,” J. Cryst. Growth79(1-3), 682–688 (1986).
    [CrossRef]
  30. J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).
  31. I. P. Kaminow, An Introduction to Electro-Optic Devices (Academic Press, 1974).
  32. J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, 1957).
  33. M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
    [CrossRef]
  34. A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am.46(6), 1223–1231 (1966).
  35. R. W. Dixon and M. G. Cohen, “A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate,” Appl. Phys. Lett.8(8), 205–207 (1966).
    [CrossRef]
  36. A. Yariv and P. Yeh, Optical Waves in Crystals, (John Wiley, 1984).
  37. J. P. Salvestrini, M. Abarkan, and M. D. Fontana, “Comparative study of nonlinear optical crystals for electro-optic Q-switching of laser resonators,” Opt. Mater.26(4), 449–458 (2004).
    [CrossRef]

2011

2010

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

2008

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

2007

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
[CrossRef]

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express15(21), 14171–14176 (2007).
[CrossRef] [PubMed]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

2006

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

E. P. Kokanyan, “‘Hafnium-doped periodically poled lithium niobate crystals: Growth and photorefractive propertie,” Ferroelectrics341(1), 119–124 (2006).
[CrossRef]

2005

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

2004

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

J. P. Salvestrini, M. Abarkan, and M. D. Fontana, “Comparative study of nonlinear optical crystals for electro-optic Q-switching of laser resonators,” Opt. Mater.26(4), 449–458 (2004).
[CrossRef]

2003

M. Abarkan, J. P. Salvestrini, M. Aillerie, and M. D. Fontana, “Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals,” Appl. Opt.42, 2346–2353 (2003).
[CrossRef] [PubMed]

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

2002

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

2000

M. Aillerie, N. Theofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B70(3), 317–334 (2000).
[CrossRef]

A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).

1999

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

1998

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

1997

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).

1994

1992

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

1990

T. R. Volk, V. I. Pryalkin, and N. M. Rubinina, “Optical-damage-resistant LiNbO(3):Zn crystal,” Opt. Lett.15(18), 996–998 (1990).
[CrossRef] [PubMed]

D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
[CrossRef]

1986

K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
[CrossRef]

B. C. Grabmaier and F. Otto, “Growth and investigation in MgO-doped LiNbO3,” J. Cryst. Growth79(1-3), 682–688 (1986).
[CrossRef]

1984

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

1982

J. F. McCannt, J. Pezytg, and P. Wilsen, “A versatile electronic light shutter composed of a high speed switching circuit coupled with a lithium niobate Pockels cell,” J. Phys. E Sci. Instrum.15(3), 322–324 (1982).
[CrossRef]

1966

A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am.46(6), 1223–1231 (1966).

R. W. Dixon and M. G. Cohen, “A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate,” Appl. Phys. Lett.8(8), 205–207 (1966).
[CrossRef]

Abarkan, M.

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

J. P. Salvestrini, M. Abarkan, and M. D. Fontana, “Comparative study of nonlinear optical crystals for electro-optic Q-switching of laser resonators,” Opt. Mater.26(4), 449–458 (2004).
[CrossRef]

M. Abarkan, J. P. Salvestrini, M. Aillerie, and M. D. Fontana, “Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals,” Appl. Opt.42, 2346–2353 (2003).
[CrossRef] [PubMed]

Abdi, F.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Aillerie, M.

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

M. Abarkan, J. P. Salvestrini, M. Aillerie, and M. D. Fontana, “Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals,” Appl. Opt.42, 2346–2353 (2003).
[CrossRef] [PubMed]

M. Aillerie, N. Theofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B70(3), 317–334 (2000).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Argiolas, N.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Bacci, L.

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Banfi, G. P.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Bazzan, M.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Bourson, P.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Brehat, F.

J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

Chen, S.

H. Liu, Q. Liang, M. Zhu, W. Li, S. Liu, L. Zhang, S. Chen, Y. Kong, and J. Xu, “An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate,” Opt. Express19(3), 1743–1748 (2011).
[CrossRef] [PubMed]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Ciampolillo, M. V.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Cohen, M. G.

R. W. Dixon and M. G. Cohen, “A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate,” Appl. Phys. Lett.8(8), 205–207 (1966).
[CrossRef]

Coquin, G. A.

A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am.46(6), 1223–1231 (1966).

Corradi, G.

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

Cravero, I.

K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
[CrossRef]

Cristiani, I.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express15(21), 14171–14176 (2007).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
[CrossRef]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

Datta, P. K.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Davis, L.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
[CrossRef]

Degiorgio, V.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express15(21), 14171–14176 (2007).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
[CrossRef]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Deng, D.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Dixon, R. W.

R. W. Dixon and M. G. Cohen, “A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate,” Appl. Phys. Lett.8(8), 205–207 (1966).
[CrossRef]

Dong, C.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Eimerl, D.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
[CrossRef]

Feigelson, R. S.

A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).

Földvári, I.

K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
[CrossRef]

Fontana, M.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Fontana, M. D.

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

J. P. Salvestrini, M. Abarkan, and M. D. Fontana, “Comparative study of nonlinear optical crystals for electro-optic Q-switching of laser resonators,” Opt. Mater.26(4), 449–458 (2004).
[CrossRef]

M. Abarkan, J. P. Salvestrini, M. Aillerie, and M. D. Fontana, “Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals,” Appl. Opt.42, 2346–2353 (2003).
[CrossRef] [PubMed]

M. Aillerie, N. Theofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B70(3), 317–334 (2000).
[CrossRef]

J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).

Fortusini, D.

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Furukawa, Y.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

Gao, G.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Gao, H.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

Grabmaier, B. C.

B. C. Grabmaier and F. Otto, “Growth and investigation in MgO-doped LiNbO3,” J. Cryst. Growth79(1-3), 682–688 (1986).
[CrossRef]

Grando, D.

Gruber, J. B.

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

Hang, Z.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Hovsepyan, R. K.

A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).

Jazbinšek, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

Jin, J.

G. Zhong, J. Jin, and Z. Wu, in Proceedings of the 11th International Quantum Electronics Conference IQEC ’80 (IEEE, 1980), p. 631.

Kitamura, K.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

Kokanyan, E. P.

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
[CrossRef]

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express15(21), 14171–14176 (2007).
[CrossRef] [PubMed]

E. P. Kokanyan, “‘Hafnium-doped periodically poled lithium niobate crystals: Growth and photorefractive propertie,” Ferroelectrics341(1), 119–124 (2006).
[CrossRef]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).

Kong, Y.

H. Liu, Q. Liang, M. Zhu, W. Li, S. Liu, L. Zhang, S. Chen, Y. Kong, and J. Xu, “An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate,” Opt. Express19(3), 1743–1748 (2011).
[CrossRef] [PubMed]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Kovács, L.

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
[CrossRef]

Li, P.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Li, S.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Li, W.

Li, Y.

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Liang, Q.

Liu, H.

Liu, S.

H. Liu, Q. Liang, M. Zhu, W. Li, S. Liu, L. Zhang, S. Chen, Y. Kong, and J. Xu, “An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate,” Opt. Express19(3), 1743–1748 (2011).
[CrossRef] [PubMed]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Maximov, B.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

McCannt, J. F.

J. F. McCannt, J. Pezytg, and P. Wilsen, “A versatile electronic light shutter composed of a high speed switching circuit coupled with a lithium niobate Pockels cell,” J. Phys. E Sci. Instrum.15(3), 322–324 (1982).
[CrossRef]

Minakata, M.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

Minzioni, P.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

P. Minzioni, I. Cristiani, J. Yu, J. Parravicini, E. P. Kokanyan, and V. Degiorgio, “Linear and nonlinear optical properties of Hafnium-doped lithium-niobate crystals,” Opt. Express15(21), 14171–14176 (2007).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
[CrossRef]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

Musso, E.

Nava, G.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Onoe, M.

A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am.46(6), 1223–1231 (1966).

Otto, F.

B. C. Grabmaier and F. Otto, “Growth and investigation in MgO-doped LiNbO3,” J. Cryst. Growth79(1-3), 682–688 (1986).
[CrossRef]

Parravicini, J.

Petrosyan, A. M.

A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).

Pezytg, J.

J. F. McCannt, J. Pezytg, and P. Wilsen, “A versatile electronic light shutter composed of a high speed switching circuit coupled with a lithium niobate Pockels cell,” J. Phys. E Sci. Instrum.15(3), 322–324 (1982).
[CrossRef]

Polgar, K.

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

Polgár, K.

K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
[CrossRef]

Pozzobon, P.

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Pryalkin, V. I.

Razzari, L.

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

Rubinia, N.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Rubinina, N. M.

Ruschhaupt, G.

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

Sada, C.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Salvestrini, J.

J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).

Salvestrini, J. P.

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

J. P. Salvestrini, M. Abarkan, and M. D. Fontana, “Comparative study of nonlinear optical crystals for electro-optic Q-switching of laser resonators,” Opt. Mater.26(4), 449–458 (2004).
[CrossRef]

M. Abarkan, J. P. Salvestrini, M. Aillerie, and M. D. Fontana, “Frequency and wavelength dependences of electro-optic coefficients in inorganic crystals,” Appl. Opt.42, 2346–2353 (2003).
[CrossRef] [PubMed]

Saoner, L.

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Sato, M.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

Sulyanov, S.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Theofanous, N.

M. Aillerie, N. Theofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B70(3), 317–334 (2000).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

Velsko, S.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
[CrossRef]

Volk, T.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Volk, T. R.

Wang, F.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
[CrossRef]

Wang, Q.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Warner, A. W.

A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am.46(6), 1223–1231 (1966).

Wilsen, P.

J. F. McCannt, J. Pezytg, and P. Wilsen, “A versatile electronic light shutter composed of a high speed switching circuit coupled with a lithium niobate Pockels cell,” J. Phys. E Sci. Instrum.15(3), 322–324 (1982).
[CrossRef]

Woehlecke, M.

Wohlecke, M.

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

Wöhlecke, M.

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

Wu, Z.

G. Zhong, J. Jin, and Z. Wu, in Proceedings of the 11th International Quantum Electronics Conference IQEC ’80 (IEEE, 1980), p. 631.

Wyncke, B.

J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).

Xu, J.

H. Liu, Q. Liang, M. Zhu, W. Li, S. Liu, L. Zhang, S. Chen, Y. Kong, and J. Xu, “An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate,” Opt. Express19(3), 1743–1748 (2011).
[CrossRef] [PubMed]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Xu, X.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Yajima, Y.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

Yan, W.

G. Nava, P. Minzioni, W. Yan, J. Parravicini, D. Grando, E. Musso, I. Cristiani, N. Argiolas, M. Bazzan, M. V. Ciampolillo, A. Zaltron, C. Sada, and V. Degiorgio, “Zirconium-doped lithium niobate: photorefractive and electro-optical properties as a function of dopant concentration,” Opt. Mater. Express1(2), 270–277 (2011).
[CrossRef]

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Yu, J.

Zaltron, A.

Zaltron, A. M.

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

Zgonik, M.

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

Zhang, L.

H. Liu, Q. Liang, M. Zhu, W. Li, S. Liu, L. Zhang, S. Chen, Y. Kong, and J. Xu, “An excellent crystal for high resistance against optical damage in visible-UV range: near-stoichiometric zirconium-doped lithium niobate,” Opt. Express19(3), 1743–1748 (2011).
[CrossRef] [PubMed]

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

Zhang, S.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Zhang, X.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Zhao, Y.

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

Zhong, G.

G. Zhong, J. Jin, and Z. Wu, in Proceedings of the 11th International Quantum Electronics Conference IQEC ’80 (IEEE, 1980), p. 631.

Zhu, M.

Appl. Opt.

Appl. Phys. B

M. Jazbinšek and M. Zgonik, “Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics,” Appl. Phys. B74(4-5), 407–414 (2002).
[CrossRef]

M. Aillerie, N. Theofanous, and M. D. Fontana, “Measurement of the electro-optic coefficients: description and comparison of the experimental techniques,” Appl. Phys. B70(3), 317–334 (2000).
[CrossRef]

F. Abdi, M. Aillerie, M. Fontana, P. Bourson, T. Volk, B. Maximov, S. Sulyanov, N. Rubinia, and M. Wöhlecke, “Influence of Zn doping on electrooptical properties and structure parameters of lithium niobate crystals,” Appl. Phys. B68(5), 795–799 (1999).
[CrossRef]

M. Abarkan, M. Aillerie, J. P. Salvestrini, M. D. Fontana, and E. P. Kokanyan, “Electro-optic and dielectric properties of Hafnium-doped congruent lithium niobate crystals,” Appl. Phys. B92(4), 603–608 (2008).
[CrossRef]

Appl. Phys. Lett.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.44(9), 847–849 (1984).
[CrossRef]

E. P. Kokanyan, L. Razzari, I. Cristiani, V. Degiorgio, and J. B. Gruber, “Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,” Appl. Phys. Lett.84(11), 1880–1882 (2004).
[CrossRef]

L. Razzari, P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Photrefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett.86(13), 131914 (2005).
[CrossRef]

G. P. Banfi, P. K. Datta, V. Degiorgio, and D. Fortusini, “Wavelength shifting and amplification of optical pulses through cascaded second-order processes in periodically poled lithium niobate,” Appl. Phys. Lett.73(2), 136–138 (1998).
[CrossRef]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: Zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett.91(8), 081908 (2007).
[CrossRef]

L. Kovács, G. Ruschhaupt, K. Polgar, G. Corradi, and M. Wohlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett.70(21), 2801–2803 (1997).
[CrossRef]

R. W. Dixon and M. G. Cohen, “A new technique for measuring magnitudes of photoelastic tensors and its application to lithium niobate,” Appl. Phys. Lett.8(8), 205–207 (1966).
[CrossRef]

Ferroelectrics

E. P. Kokanyan, “‘Hafnium-doped periodically poled lithium niobate crystals: Growth and photorefractive propertie,” Ferroelectrics341(1), 119–124 (2006).
[CrossRef]

J. Acoust. Soc. Am.

A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystals in class (3m),” J. Acoust. Soc. Am.46(6), 1223–1231 (1966).

J. Appl. Phys.

N. Argiolas, M. Bazzan, M. V. Ciampolillo, P. Pozzobon, C. Sada, L. Saoner, A. M. Zaltron, L. Bacci, P. Minzioni, G. Nava, J. Parravicini, W. Yan, I. Cristiani, and V. Degiorgio, “Structural and optical properties of zirconium doped lithium niobate crystals,” J. Appl. Phys.108(9), 093508 (2010).
[CrossRef]

P. Minzioni, I. Cristiani, V. Degiorgio, and E. P. Kokanyan, “Strongly sublinear growth of the photorefractive effect for increasing pump intensities in doped lithium-niobate crystals,” J. Appl. Phys.101(11), 116105 (2007).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, and M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various [Li]/[Nb] ratios,” J. Appl. Phys.72(8), 3250 (1992).
[CrossRef]

J. Cryst. Growth

B. C. Grabmaier and F. Otto, “Growth and investigation in MgO-doped LiNbO3,” J. Cryst. Growth79(1-3), 682–688 (1986).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

S. Li, S. Liu, Y. Kong, D. Deng, G. Gao, Y. Li, H. Gao, L. Zhang, Z. Hang, S. Chen, and J. Xu, “The optical damage resistance and absorption spectra of LiNbO3:Hf crystals,” J. Phys. Condens. Matter18(13), 3527–3534 (2006).
[CrossRef]

J. Phys. E Sci. Instrum.

J. F. McCannt, J. Pezytg, and P. Wilsen, “A versatile electronic light shutter composed of a high speed switching circuit coupled with a lithium niobate Pockels cell,” J. Phys. E Sci. Instrum.15(3), 322–324 (1982).
[CrossRef]

Nonlinear Optics

J. Salvestrini, M. D. Fontana, B. Wyncke, and F. Brehat, “Comparative measurements of the frequency dependence of the electrooptical and dielectric coefficient in inorganic crystals,” Nonlinear Optics17, 271 (1997).

Opt. Express

Opt. Laser Technol.

S. Zhang, Q. Wang, X. Xu, C. Dong, X. Zhang, and P. Li, “Diode-laser pumped passively Q-switched green laser by intracavity frequency-doubling with periodically poled LiNbO3,” Opt. Laser Technol.35(3), 233–235 (2003).
[CrossRef]

Opt. Lett.

Opt. Mater.

J. P. Salvestrini, M. Abarkan, and M. D. Fontana, “Comparative study of nonlinear optical crystals for electro-optic Q-switching of laser resonators,” Opt. Mater.26(4), 449–458 (2004).
[CrossRef]

Opt. Mater. Express

Proc. SPIE

A. M. Petrosyan, R. K. Hovsepyan, E. P. Kokanyan, and R. S. Feigelson, “Growth and evaluation of lithium niobate crystals containing nonphotorefractive dopants,” Proc. SPIE4060, 106–113 (2000).

Prog. Cryst. Growth Charact. Mater.

D. Eimerl, S. Velsko, L. Davis, and F. Wang, “Progress in nonlinear optical materials for high power lasers,” Prog. Cryst. Growth Charact. Mater.20(1–2), 59–113 (1990).
[CrossRef]

Solid State Commun.

K. Polgár, L. Kovács, I. Földvári, and I. Cravero, “Spectroscopic and electrical conductivity investigation of Mg doped LiNbO3 single crystals,” Solid State Commun.59(6), 375–379 (1986).
[CrossRef]

Other

G. Zhong, J. Jin, and Z. Wu, in Proceedings of the 11th International Quantum Electronics Conference IQEC ’80 (IEEE, 1980), p. 631.

E. Krätzig and O. F. Schirmer, “Photorefractive centers in electro-optic crystals,” in Photorefractive Materials and their Applications I, P. Günter and J. P. Huignard, eds. (Springer, 1988), pp. 131-167.

T. Volk and M. Wöhlecke, in Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer-Verlag, 2008).

A. Yariv and P. Yeh, Optical Waves in Crystals, (John Wiley, 1984).

I. P. Kaminow, An Introduction to Electro-Optic Devices (Academic Press, 1974).

J. F. Nye, Physical Properties of Crystals (Oxford Univ. Press, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption edge versus Zr concentration in congruent LN doped crystals evaluated from absorption spectra. Insert: Zoom of the absorption spectra in the range of the absorption edge.

Fig. 2
Fig. 2

Optical transmission function of Sénarmont setup versus the angle of the analyzer β and applied voltage. The point M0 is the minimum transmission point for which the output optical signal has a frequency twice the frequency of the applied electric field. M1 is the 50% transmission point yielding the linear replica of the ac voltage.

Fig. 3
Fig. 3

Responses Δi(t) to a step voltage ΔV(t) at different time scales in the case of the EO coefficient r222 in 0.8%-Zr doped LN single crystal. Measurements were performed at the wavelength of 633nm.

Fig. 4
Fig. 4

Comparison of the frequency dispersions of the dielectric permittivity ε22 and of the EO coefficient r222 in the 0.8 mol% Zr-doped LN crystal.

Fig. 5
Fig. 5

EO coefficient rT222 and rS222 versus Zr concentration in congruent LN.

Fig. 6
Fig. 6

Dielectric constant ε22T and ε22S versus Zr concentration in congruent LN.

Tables (1)

Tables Icon

Table 1 Absolute values of the r222 EO coefficient and related parameters of LN:Zr crystals as function of zirconium concentration: The EO coefficients at constant stress (rT) were obtained by both MDM and TRM methods and at constant strain (rS) by the TRM method, at 633 nm and at room temperature. The dielectric permittivities ε22T and ε22S were measured at room temperature. The figure of merit F = n7(r222S)2222S was calculated from experimental values.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r eff (ν)= 2λd π n eff 3 I 0 L i pp (ν) V pp (ν)
Δi(t)= π n eff 3 L I 0 2λD r eff (t)ΔV(t)
r eff (ν)= 2λD π n eff 3 I 0 L Δi(ν) ΔV(ν)
r ij,k a = lm p ij,lm E d lm,k
Δ ε ij = ε ij T ε ij S = kl d ij,k e kl = kl d ij,k C ijkl E d l,ij ,
r 222 a =( p 11 E p 12 E ) d 22 + p 14 E d 15
Δ ε 22 =2 d 22 2 ( C 11 E C 12 E )4 d 22 d 15 C 14 E + d 15 2 C 44 E ,

Metrics