Abstract

We present an Electron-beam-eXcitation-Assisted (EXA) optical microscope with a nanometric illumination light source consisting of red cathode luminescence (CL) lights emitted by a Y2O3:Eu3+ phosphor thin film excited by a high-energy focused electron beams. Phosphor films a few hundred nanometers thick were fabricated on 50-nm Si3N4 membranes using electron beam evaporation. The film preparation conditions for brighter CL emissions were examined in terms of the post-annealing temperatures and film thickness. We succeeded in spatially resolving gold nanoparticles with average diameter of 100 nm. The observations proved that the microscope has a spatial resolution higher than the diffraction limits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt.41(15), 2930–2934 (2002).
    [CrossRef] [PubMed]
  2. S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt.30(16), 2143–2150 (1991).
    [CrossRef] [PubMed]
  3. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
    [CrossRef] [PubMed]
  4. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
    [CrossRef] [PubMed]
  5. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
    [CrossRef]
  6. W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18(12), 12897–12902 (2010).
    [CrossRef] [PubMed]
  7. J. I. Goldstein, “Principle of thin film X-ray microanalysis,” in Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds. (Plenum Press, 1979), pp. 83–120.
  8. W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
    [CrossRef]
  9. N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy,” Nano Lett.10(3), 1028–1031 (2010).
    [CrossRef] [PubMed]
  10. J. Christen, M. Grundmann, and D. Bimberg, “Scanning cathodoluminescence microscopy: A unique approach to atomic scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities,” J. Vac. Sci. Technol. B9(4), 2358–2368 (1991).
    [CrossRef]
  11. Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
    [CrossRef]
  12. D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
    [CrossRef]
  13. S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
    [CrossRef]
  14. S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
    [CrossRef]
  15. G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
    [CrossRef]
  16. M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
    [CrossRef]
  17. D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
    [CrossRef]
  18. N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
    [CrossRef]
  19. D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
    [CrossRef]
  20. W.-C. Chien, “Synthesis of Y2O3:Eu phosphors by bicontinuous cubic phase process,” J. Cryst. Growth290(2), 554–559 (2006).
    [CrossRef]
  21. J. Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin.93(4), 313–319 (2001).
    [CrossRef]

2012

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

2010

N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy,” Nano Lett.10(3), 1028–1031 (2010).
[CrossRef] [PubMed]

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18(12), 12897–12902 (2010).
[CrossRef] [PubMed]

2009

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

2008

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

2007

N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
[CrossRef]

2006

W.-C. Chien, “Synthesis of Y2O3:Eu phosphors by bicontinuous cubic phase process,” J. Cryst. Growth290(2), 554–559 (2006).
[CrossRef]

2005

Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
[CrossRef]

S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
[CrossRef]

2003

D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
[CrossRef]

2002

2001

J. Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin.93(4), 313–319 (2001).
[CrossRef]

2000

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

1999

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

1998

D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
[CrossRef]

1991

J. Christen, M. Grundmann, and D. Bimberg, “Scanning cathodoluminescence microscopy: A unique approach to atomic scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities,” J. Vac. Sci. Technol. B9(4), 2358–2368 (1991).
[CrossRef]

S. Kimura and T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt.30(16), 2143–2150 (1991).
[CrossRef] [PubMed]

1984

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Anh, T. K.

N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
[CrossRef]

Bigelow, W. C.

N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy,” Nano Lett.10(3), 1028–1031 (2010).
[CrossRef] [PubMed]

Bihari, B.

D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
[CrossRef]

Bimberg, D.

J. Christen, M. Grundmann, and D. Bimberg, “Scanning cathodoluminescence microscopy: A unique approach to atomic scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities,” J. Vac. Sci. Technol. B9(4), 2358–2368 (1991).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Chien, W.-C.

W.-C. Chien, “Synthesis of Y2O3:Eu phosphors by bicontinuous cubic phase process,” J. Cryst. Growth290(2), 554–559 (2006).
[CrossRef]

Cho, K. G.

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

Cho, S. H.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

Christen, J.

J. Christen, M. Grundmann, and D. Bimberg, “Scanning cathodoluminescence microscopy: A unique approach to atomic scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities,” J. Vac. Sci. Technol. B9(4), 2358–2368 (1991).
[CrossRef]

Cocivera, M.

J. Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin.93(4), 313–319 (2001).
[CrossRef]

Craciun, V.

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

de Jonge, N.

N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy,” Nano Lett.10(3), 1028–1031 (2010).
[CrossRef] [PubMed]

Denk, W.

F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt.41(15), 2930–2934 (2002).
[CrossRef] [PubMed]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Fujiwara, J.

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

Fukuta, M.

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

Götte, Th.

D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
[CrossRef]

Götze, J.

D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
[CrossRef]

Grundmann, M.

J. Christen, M. Grundmann, and D. Bimberg, “Scanning cathodoluminescence microscopy: A unique approach to atomic scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities,” J. Vac. Sci. Technol. B9(4), 2358–2368 (1991).
[CrossRef]

Hao, J.

J. Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin.93(4), 313–319 (2001).
[CrossRef]

Hara, K.

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

Hatanaka, Y.

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

Hell, S. W.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Helmchen, F.

Hong, K. J.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

Inami, W.

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18(12), 12897–12902 (2010).
[CrossRef] [PubMed]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Jeon, D. Y.

S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
[CrossRef]

Jia, G.

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Kang, J. H.

S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
[CrossRef]

Kawata, Y.

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

W. Inami, K. Nakajima, A. Miyakawa, and Y. Kawata, “Electron beam excitation assisted optical microscope with ultra-high resolution,” Opt. Express18(12), 12897–12902 (2010).
[CrossRef] [PubMed]

Kimura, S.

Kominami, H.

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

Kumar, D.

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

Kwon, S. H.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

Kwon, S. J.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Lee, J. D.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

Lewis, A.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

McHale, J. M.

D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
[CrossRef]

Miyakawa, A.

Nakajima, K.

Nakanishi, Y.

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

Neuser, R. D.

D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
[CrossRef]

Oh, C. W.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

Ono, A.

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

Pezzotti, G.

Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
[CrossRef]

Pohl, D. W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

Richter, D. K.

D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
[CrossRef]

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Sakabe, Y.

Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
[CrossRef]

Sankar, J.

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

Shin, S. H.

S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
[CrossRef]

Singh, R. K.

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

Song, Y.

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

Strek, W.

N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
[CrossRef]

Studenikin, S. A.

J. Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin.93(4), 313–319 (2001).
[CrossRef]

Sychov, M.

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

Tank, D. W.

Tissue, B. M.

D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
[CrossRef]

Veith, G. M.

N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy,” Nano Lett.10(3), 1028–1031 (2010).
[CrossRef] [PubMed]

Vu, N.

N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
[CrossRef]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Williams, D. K.

D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
[CrossRef]

Wilson, T.

Yamamoto, H.

Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
[CrossRef]

Yamashita, Y.

Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
[CrossRef]

Yang, M.

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

Yi, G.-C.

N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
[CrossRef]

Yoo, J. S.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

You, H.

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

Zang, D. S.

S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
[CrossRef]

Zhang, H.

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett.44(7), 651–653 (1984).
[CrossRef]

W. Inami, J. Fujiwara, M. Fukuta, A. Ono, and Y. Kawata, “Analysis of electron and light scattering in a fluorescent thin film by combination of Monte Carlo simulation and finite-difference time-domain method,” Appl. Phys. Lett.101(15), 151104 (2012).
[CrossRef]

D. Kumar, J. Sankar, K. G. Cho, V. Craciun, and R. K. Singh, “Enhancement of cathodoluminescent and photoluminescent properties of Eu:Y2O3 luminescent films by vacuum cooling,” Appl. Phys. Lett.77(16), 2518–2520 (2000).
[CrossRef]

Biophys. J.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, “High-resolution nonlinear optical imaging of live cells by second harmonic generation,” Biophys. J.77(6), 3341–3349 (1999).
[CrossRef] [PubMed]

Cryst. Growth Des.

G. Jia, M. Yang, Y. Song, H. You, and H. Zhang, “General and facile method to prepare uniform Y2O3:Eu hollow microspheres,” Cryst. Growth Des.9(1), 301–307 (2009).
[CrossRef]

J. Cryst. Growth

W.-C. Chien, “Synthesis of Y2O3:Eu phosphors by bicontinuous cubic phase process,” J. Cryst. Growth290(2), 554–559 (2006).
[CrossRef]

J. Electrochem. Soc.

S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent characteristics of a spherical Y2 O3:Eu phosphor screen for field emission display application,” J. Electrochem. Soc.147(8), 3143–3147 (2000).
[CrossRef]

J. Lumin.

S. H. Shin, J. H. Kang, D. Y. Jeon, and D. S. Zang, “Enhancement of cathodoluminescence intensities of Y2O3:Eu and Gd2O3:Eu phosphors by incorporation of Li ions,” J. Lumin.114(3-4), 275–280 (2005).
[CrossRef]

N. Vu, T. K. Anh, G.-C. Yi, and W. Strek, “Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis,” J. Lumin.122–123, 776–779 (2007).
[CrossRef]

J. Hao, S. A. Studenikin, and M. Cocivera, “Blue, green and red cathodoluminescence of Y2O3 phosphor films prepared by spray pyrolysis,” J. Lumin.93(4), 313–319 (2001).
[CrossRef]

J. Phys. Chem. B

D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and fluorescence spectroscopy of bulk monoclinic Eu3+:Y2O3 and comparison to Eu3+:Y2O3 nanocrystals,” J. Phys. Chem. B102(6), 916–920 (1998).
[CrossRef]

J. Vac. Sci. Technol. B

J. Christen, M. Grundmann, and D. Bimberg, “Scanning cathodoluminescence microscopy: A unique approach to atomic scale characterization of heterointerfaces and imaging of semiconductor inhomogeneities,” J. Vac. Sci. Technol. B9(4), 2358–2368 (1991).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Yamashita, H. Yamamoto, Y. Sakabe, and G. Pezzotti, “Microscopic stress analysis of BaTiO3 using optical activity of its point defects,” Jpn. J. Appl. Phys.44(9B), 6985–6988 (2005).
[CrossRef]

M. Sychov, Y. Nakanishi, H. Kominami, Y. Hatanaka, and K. Hara, “Optimization of low-voltage cathodoluminescence of electron-beam-evaporated Y2O3:Eu thin film phosphor,” Jpn. J. Appl. Phys.47(9), 7206–7210 (2008).
[CrossRef]

Mineral. Petrol.

D. K. Richter, Th. Götte, J. Götze, and R. D. Neuser, “Progress in application of cathodoluminescence (CL) in sedimentary petrology,” Mineral. Petrol.79, 127–166 (2003).
[CrossRef]

Nano Lett.

N. de Jonge, W. C. Bigelow, and G. M. Veith, “Atmospheric pressure scanning transmission electron microscopy,” Nano Lett.10(3), 1028–1031 (2010).
[CrossRef] [PubMed]

Opt. Express

Science

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science320(5873), 246–249 (2008).
[CrossRef] [PubMed]

Other

J. I. Goldstein, “Principle of thin film X-ray microanalysis,” in Introduction to Analytical Electron Microscopy, J. J. Hren, J. I. Goldstein, and D. C. Joy, eds. (Plenum Press, 1979), pp. 83–120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematics of EXA optical microscope. (b) Enlarged schematic view of specimen irradiated with nanometric cathode luminescence light from Y2O3:Eu3+ phosphor films. (c) Top and side views of Y2O3:Eu3+ phosphor films on Si3N4 membrane. PMT: photomultiplier tube.

Fig. 2
Fig. 2

Cathode luminescence spectrum of 200-nm-thick Y2O3: Eu3+ phosphor film on Si3N4 membrane.

Fig. 3
Fig. 3

(a) Cathode luminescence intensities from Y2O3:Eu3+ phosphor films on Si3N4 membrane annealed at different temperatures. (b) X-ray diffraction patterns of as-deposited and post-annealed Y2O3:Eu3+ phosphor films on Si3N4 membranes.

Fig. 4
Fig. 4

(a) Cathode luminescence intensity from post-annealed Y2O3:Eu3+ phosphor films of different film thickness on Si3N4 membrane. (b)–(e) AFM images of as-deposited and 1000°C -annealed Y2O3:Eu3+ phosphor films on Si3N4 before and after post-annealing procedure. Images (b) and (c) correspond to the data for the as-deposited and annealed films 200 nm in thickness, respectively. The images (d) and (e) correspond to the as-deposited and annealed films 85 nm in thickness, respectively.

Fig. 5
Fig. 5

Cathode luminescence intensity of 200 nm-thick 1000°C-annealed Y2O3:Eu3+ phosphor films on Si3N4 membrane with as a function of electron beam accelerating voltage (open circles). Data for as-deposited Y2O3:Eu3+ phosphor films (open triangles) and pristine Si3N4 membrane films (filled circles) are also shown as references.

Fig. 6
Fig. 6

(a) EXA microscope images of gold nanoparticles scattered on Y2O3:Eu3+ phosphor films. (b) SEM images of area in (a). (c) Intensity distribution on solid line in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

V= I 1 I 2 I 1 + I 2

Metrics