Abstract

Transparent fluorogermanate glass-ceramics singly doped with 0.25 mol.%Tm3+ have been prepared through melt quenching and sequential thermal treatment. The structure and composition of the glass-ceramics have been characterized by means of X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Efficient three-step sequential three-photon near-infrared (NIR) quantum cutting has been demonstrated, where an absorbed blue photon at 468 nm could be cut into three NIR photons at 1190, 1462 and 1800 nm, respectively. The underlying mechanism has been analyzed in terms of the static and dynamic spectra measurements. Based on the experimental data and theoretical consideration, an internal quantum yield has been estimated to be about 160%. Further development of such a triply-cutting material might explore a way to design high efficient photonic devices, which harvest more photons emitted than absorbed in the excitation process.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
    [CrossRef]
  2. R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000).
    [CrossRef]
  3. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
    [CrossRef]
  4. J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
    [CrossRef]
  5. W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
    [CrossRef]
  6. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
    [CrossRef] [PubMed]
  7. B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
    [CrossRef]
  8. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
    [CrossRef]
  9. Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007).
    [CrossRef]
  10. Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
    [CrossRef]
  11. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
    [CrossRef]
  12. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Near-infrared quantum cutting in transparent nanostructured glass ceramics,” Opt. Lett.33(16), 1884–1886 (2008).
    [CrossRef] [PubMed]
  13. J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
    [CrossRef]
  14. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
    [CrossRef]
  15. D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
    [CrossRef]
  16. H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett.36(6), 876–878 (2011).
    [CrossRef] [PubMed]
  17. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
    [CrossRef]
  18. X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, “Three-photon infrared quantum cutting from single species of rare-earth Er3+ ions in Er0.3Gd0.7VO4 crystalline,” Opt. Lett.34(7), 887–889 (2009).
    [CrossRef] [PubMed]
  19. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
    [CrossRef]
  20. D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
    [CrossRef]
  21. M. Mortier, “Between glass and crystal: Glass–ceramics, a new way for optical materials,” Philos. Mag. B82(6), 745–753 (2002).
  22. M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
    [CrossRef]
  23. M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids239(1–3), 149–155 (1998).
    [CrossRef]
  24. W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
    [CrossRef]
  25. D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).
  26. L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
    [CrossRef]
  27. H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964).
    [CrossRef]
  28. R. P. Bauman and S. P. S. Porto, “Lattice vibrations and structure of rare-earth fluorides,” Phys. Rev.161(3), 842–847 (1967).
    [CrossRef]
  29. Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
    [CrossRef]
  30. Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
    [CrossRef]
  31. J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys.78(9), 5317–5325 (1983).
    [CrossRef]

2012 (4)

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

2011 (2)

H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, “Near-infrared quantum cutting in Ho3+/Yb3+ codoped nanostructured glass ceramic,” Opt. Lett.36(6), 876–878 (2011).
[CrossRef] [PubMed]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

2010 (4)

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

2009 (2)

2008 (1)

2007 (1)

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007).
[CrossRef]

2006 (1)

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

2005 (2)

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

2003 (1)

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

2002 (1)

M. Mortier, “Between glass and crystal: Glass–ceramics, a new way for optical materials,” Philos. Mag. B82(6), 745–753 (2002).

2001 (3)

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
[CrossRef]

2000 (1)

R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000).
[CrossRef]

1999 (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

1998 (1)

M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids239(1–3), 149–155 (1998).
[CrossRef]

1983 (1)

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys.78(9), 5317–5325 (1983).
[CrossRef]

1974 (2)

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

1967 (1)

R. P. Bauman and S. P. S. Porto, “Lattice vibrations and structure of rare-earth fluorides,” Phys. Rev.161(3), 842–847 (1967).
[CrossRef]

1964 (1)

H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964).
[CrossRef]

1957 (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
[CrossRef]

Aarts, L.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

Almeida, R. M.

D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).

Auzel, F.

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

Baia, L.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
[CrossRef]

Bauman, R. P.

R. P. Bauman and S. P. S. Porto, “Lattice vibrations and structure of rare-earth fluorides,” Phys. Rev.161(3), 842–847 (1967).
[CrossRef]

Biner, D.

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Bril, A.

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

Buchanan, R. A.

H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964).
[CrossRef]

Buddhudu, S.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

Caspers, H. H.

H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964).
[CrossRef]

Chen, D. P.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Chen, D. Q.

Chen, G. R.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Chen, Q. J.

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

Chen, X. B.

Chen, Y.

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

de Jager, A. W.

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

de Luca, J. A.

W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

Dejneka, M. J.

M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids239(1–3), 149–155 (1998).
[CrossRef]

Den Hertog, M. I.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Dexter, D. L.

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
[CrossRef]

Donker, H.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Eilers, J. J.

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Gudel, H. U.

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Ham, F. S.

W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

Hays, M.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

Huang, P.

Huang, X. Y.

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Iliescu, T.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
[CrossRef]

Ji, X. H.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

Jiang, Z. H.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

Kiefer, W.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
[CrossRef]

Kox, M. H. F.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Kramer, K.

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Li, T.

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

Lin, H.

Liu, B.

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

Liu, X. F.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Marlin, H. R.

H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964).
[CrossRef]

Marques, A. C.

D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).

Martino, D. D.

D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).

Mazé, G.

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

Meijer, J. M.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Meijerink, A.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Monteville, A.

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

Morgan, S. H.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

Mortier, M.

M. Mortier, “Between glass and crystal: Glass–ceramics, a new way for optical materials,” Philos. Mag. B82(6), 745–753 (2002).

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

Mu, R.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

Oskam, K. D.

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Pan, Q. H.

Pan, Y. X.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007).
[CrossRef]

Pan, Z.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

Patriarche, G.

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

Peng, M. Y.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Piper, W. W.

W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

Porto, S. P. S.

R. P. Bauman and S. P. S. Porto, “Lattice vibrations and structure of rare-earth fluorides,” Phys. Rev.161(3), 842–847 (1967).
[CrossRef]

Qian, Q.

Qiu, J. R.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Salamo, G. J.

Santos, L. F.

D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).

Sawanobori, N.

Schuurmans, M. F. H.

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys.78(9), 5317–5325 (1983).
[CrossRef]

Shi, C.

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

Simon, S.

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
[CrossRef]

Sommerdijk, J. L.

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

Tang, H.

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

Tao, Y.

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

Ueda, A.

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

van der Eerden, J.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

van der Ende, B. M.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

van Dijk, J. M. F.

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys.78(9), 5317–5325 (1983).
[CrossRef]

Van Loef, E. V. D.

R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000).
[CrossRef]

Vergeer, P.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. H.

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

Vlugt, T. J. J.

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Wang, J.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Wang, Y. S.

Wegh, R. T.

R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000).
[CrossRef]

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Weng, F. Y.

Wijngaarden, J. T. V.

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Wondraczek, L.

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Wu, J. G.

Xu, S. H.

Xu, X. L.

Yang, A. P.

Yang, C. H.

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007).
[CrossRef]

Yang, Z. M.

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

Ye, S.

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Yu, D. C.

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Yu, Y. L.

Zhang, C. L.

Zhang, G.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Zhang, J. P.

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

Zhang, Q.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Zhang, Q. Y.

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
[CrossRef]

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007).
[CrossRef]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

Zhang, W. J.

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, “Near-infrared quantum splitting in Ho3+:LaF3 nanocrystals embedded germanate glass ceramic,” Opt. Mater. Express2(5), 636–643 (2012).
[CrossRef]

Zhang, Y. Z.

Zhu, B.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Zhuang, Y. X.

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

Adv. Mater. (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater.21(30), 3073–3077 (2009).
[CrossRef]

AIP Adv. (1)

D. C. Yu, S. Ye, X. Y. Huang, and Q. Y. Zhang, “Enhanced three-photon near-infrared quantum splitting in β-NaYF4:Ho3+ by codoping Yb3+,” AIP Adv.2(2), 022124 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, “Sequential three-step three-photon near-infrared quantum splitting in β-NaYF4:Tm3+,” Appl. Phys. Lett.100(19), 191911 (2012).
[CrossRef]

D. C. Yu, J. P. Zhang, Q. J. Chen, W. J. Zhang, Z. M. Yang, and Q. Y. Zhang, “Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics,” Appl. Phys. Lett.101(17), 171108 (2012).
[CrossRef]

J. J. Eilers, D. Biner, J. T. V. Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, “Efficient visible to infrared quantum cutting through downconversion with the Er3+-Yb3+ couple in Cs3Y2Br9,” Appl. Phys. Lett.96(15), 151106 (2010).
[CrossRef]

Q. Y. Zhang, C. H. Yang, and Y. X. Pan, “Cooperative quantum cutting in one-dimensional (YbxGd1−x)Al3(BO3)4:Tb3+ nanorods,” Appl. Phys. Lett.90(2), 021107 (2007).
[CrossRef]

Q. Y. Zhang, T. Li, Z. H. Jiang, X. H. Ji, and S. Buddhudu, “980 nm laser-diode-excited intense blue upconversion in Tm3+/Yb3+-codoped gallate–bismuth–lead glasses,” Appl. Phys. Lett.87(17), 171911 (2005).
[CrossRef]

J. Am. Ceram. Soc. (1)

Q. Zhang, B. Zhu, Y. X. Zhuang, G. R. Chen, X. F. Liu, G. Zhang, J. R. Qiu, and D. P. Chen, “Quantum cutting in Tm3+/Yb3+-codoped lanthanum aluminum germanate glasses,” J. Am. Ceram. Soc.93(3), 654–657 (2010).
[CrossRef]

J. Chem. Phys. (2)

J. M. F. van Dijk and M. F. H. Schuurmans, “On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions,” J. Chem. Phys.78(9), 5317–5325 (1983).
[CrossRef]

H. H. Caspers, R. A. Buchanan, and H. R. Marlin, “Lattice Vibrations of LaF3,” J. Chem. Phys.41(1), 94 (1964).
[CrossRef]

J. Lumin. (4)

B. Liu, Y. Chen, C. Shi, H. Tang, and Y. Tao, “Visible quantum cutting in BaF2:Gd,Eu via downconversion,” J. Lumin.101(1–2), 155–159 (2003).
[CrossRef]

R. T. Wegh, E. V. D. Van Loef, and A. Meijerink, “Visible quantum cutting via downconversion in LiGdF4:Er3+,Tb3+ upon Er3+ 4f11 → 4f105d excitation,” J. Lumin.90(3–4), 111–122 (2000).
[CrossRef]

J. L. Sommerdijk, A. Bril, and A. W. de Jager, “Two photon luminescence with ultraviolet excitation of trivalent praseodymium,” J. Lumin.8(4), 341–343 (1974).
[CrossRef]

W. W. Piper, J. A. de Luca, and F. S. Ham, “Cascade fluorescent decay in Pr3+-doped fluorides: Achievement of a quantum yield greater than unity for emission of visible light,” J. Lumin.8(4), 344–348 (1974).
[CrossRef]

J. Mol. Struct. (1)

L. Baia, T. Iliescu, S. Simon, and W. Kiefer, “Raman and IR spectroscopic studies of manganese doped GeO2–Bi2O3 glasses,” J. Mol. Struct.599(1–3), 9–13 (2001).
[CrossRef]

J. Non-Cryst. Solids (3)

Z. Pan, A. Ueda, M. Hays, R. Mu, and S. H. Morgan, “Studies of Er3+ doped germanate-oxyfluoride and tellurium-germanate-oxyfluoride transparent glass-ceramics,” J. Non-Cryst. Solids352(8), 801–806 (2006).
[CrossRef]

M. J. Dejneka, “The luminescence and structure of novel transparent oxyfluoride glass-ceramics,” J. Non-Cryst. Solids239(1–3), 149–155 (1998).
[CrossRef]

D. D. Martino, L. F. Santos, A. C. Marques, and R. M. Almeida, “Vibrational spectra and structure of alkali germanate glasses,” J. Non-Cryst. Solids293–295(1–2), 394–401 (2001).

Opt. Lett. (3)

Opt. Mater. (1)

M. Mortier, A. Monteville, G. Patriarche, G. Mazé, and F. Auzel, “New progresses in transparent rare-earth doped glass-ceramics,” Opt. Mater.16(1–2), 255–267 (2001).
[CrossRef]

Opt. Mater. Express (1)

Philos. Mag. B (1)

M. Mortier, “Between glass and crystal: Glass–ceramics, a new way for optical materials,” Philos. Mag. B82(6), 745–753 (2002).

Phys. Rev. (2)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev.108(3), 630–633 (1957).
[CrossRef]

R. P. Bauman and S. P. S. Porto, “Lattice vibrations and structure of rare-earth fluorides,” Phys. Rev.161(3), 842–847 (1967).
[CrossRef]

Phys. Rev. B (2)

P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1−xPO4:Tb3+,” Phys. Rev. B71(1), 014119 (2005).
[CrossRef]

J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. J. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+,Yb3+,” Phys. Rev. B81(3), 035107 (2010).
[CrossRef]

Prog. Mater. Sci. (1)

Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010).
[CrossRef]

Science (1)

R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, “Visible quantum cutting in LiGdF4:Eu3+ through downconversion,” Science283(5402), 663–666 (1999).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, “Efficient near-infrared downconversion in GdVO4:Dy3+ phosphors for enhancing the photo-response of solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1590–1593 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) XRD patterns of PG:Tm3+ and the associated GC samples, (b) typical TEM bright field image of GC@5708h, and (c) HRTEM image of LaF3 nanocrystal. The inset of Fig. 1(b) shows the corresponding SAED pattern of GC@5708h.

Fig. 2
Fig. 2

Raman spectra of PG:Tm3+ and associated GC samples.

Fig. 3
Fig. 3

Absorption spectra of PG:Tm3+ and associated GC samples.

Fig. 4
Fig. 4

Visible-to-NIR PL spectra of GC@5708h under excitation of (a) 468 nm, and (b) 790 nm and 808 nm LD, respectively. Figure 4(c) presents PL spectra of PG:Tm3+/Yb3+ excited with a 976 nm LD. Solid and dotted NIR PL spectra are recorded on R5509-72 PMT and PbSe-020 detector, respectively.

Fig. 5
Fig. 5

PLE spectra of GC@5708h monitored at PL wavelengths of 650, 792, 1190, 1462 and 1610 nm, respectively.

Fig. 6
Fig. 6

Luminescence decay curves of 650, 792, 1190, 1462 and 1610 nm of GC@5708h.

Fig. 7
Fig. 7

Energy-level diagram of Tm3+ interpreting the concept of three-step three-photon NIR-QC: (a) as 1G4 excited by 468 nm, (b) as 3H4 excited by 790 and 808 nm, respectively, and (c) as 3H5 excited by Stokes energy transfer from Yb3+: 2F5/2 pumped by 976 nm LD.

Fig. 8
Fig. 8

Visible (a) and NIR (b) time-resolved fluorescence spectra of GC@5708h upon 468 nm pulsed light excitation with a microsecond μF900 Xe flash lamp.

Tables (1)

Tables Icon

Table 1 Judd-Ofelt parameters Ωt of PG:Tm3+ and the associated GC samples

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η QY = η G 1 4 = η G 1 4 + ( β G 1 4 F 3 2 , 3 + β G 1 4 H 3 4 ) η H 3 4 + ( β G 1 4 H 3 5 + β G 1 4 F 3 4 ) η F 3 4 ,
η H 3 4 = η H 3 4 + ( β H 3 4 H 3 5 + β H 3 4 F 3 4 ) η F 3 4 ,

Metrics