Abstract

GeO2 transparent glass ceramic planar waveguides were fabricated by a RF-sputtering technique and then irradiated by a pulsed CO2 laser. The effects of CO2 laser processing on the optical and structural properties of the waveguides were evaluated by different techniques including m-line, micro-Raman spectroscopy, atomic force microscopy, and positron annihilation spectroscopy. After laser annealing, an increase of the refractive index of approximately 0.04 at 1.5 µm and a decrease of the attenuation coefficient from 0.9 to 0.5 db/cm at 1.5 µm was observed. Raman spectroscopy and microscopy results put in evidence that the system embeds GeO2 nanocrystals and their phase varies with the irradiation time. Moreover, positron annihilation spectroscopy was used to study the depth profiling of the as prepared and laser annealed samples. The obtained results yielded information on the structural changes produced after the irradiation process inside the waveguiding films of approximately 1 µm thickness. In addition, a density value of the amorphous GeO2 samples was evaluated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
    [CrossRef]
  2. N. Terakado and K. Tanaka, “Photo-induced phenomena in sputtered GeO2 films,” J. Non-Cryst. Solids351(1), 54–60 (2005).
    [CrossRef]
  3. Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
    [CrossRef]
  4. C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
    [CrossRef] [PubMed]
  5. A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).
  6. V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).
  7. S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
    [CrossRef]
  8. B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
    [CrossRef]
  9. A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
    [CrossRef]
  10. G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).
  11. S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, and M. Ferrari, “High quality factor 1-D Er³⁺-activated dielectric microcavity fabricated by rf-sputtering,” Opt. Express20(19), 21214–21222 (2012).
    [CrossRef] [PubMed]
  12. M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater.8(1-2), 37–41 (1997).
    [CrossRef]
  13. S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
    [CrossRef]
  14. C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
    [CrossRef]
  15. S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980).
    [CrossRef]
  16. S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981).
    [CrossRef]
  17. S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
    [CrossRef]
  18. Q. Liu, K. S. Chiang, L. Reekie, and Y. T. Chow, “CO2 laser induced refractive index changes in optical polymers,” Opt. Express20(1), 576–582 (2012).
    [CrossRef] [PubMed]
  19. A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
    [CrossRef]
  20. N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).
  21. P. Muller-Buschbaum, “A basic introduction to grazing incidence small-angle X-ray scattering,” Lect. Notes Phys.776, 61–89 (2009).
  22. P. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000).
  23. S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
    [CrossRef]
  24. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012).
    [CrossRef] [PubMed]
  25. A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
    [CrossRef]
  26. C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
    [CrossRef]
  27. R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
    [CrossRef]
  28. P. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys.60(3), 701–779 (1988).
    [CrossRef]
  29. S. Valkealahti and R. M. Nieminen, “Monte Carlo calculations of keV electron and positron slowing down in solids. II,” Appl. Phys., A Mater. Sci. Process.35(1), 51–59 (1984).
    [CrossRef]
  30. P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994).
    [CrossRef]
  31. A. Trukhin and B. Capoen, “Raman and optical reflection spectra of germanate and silicate glasses,” J. Non-Cryst. Solids351(46-48), 3640–3643 (2005).
    [CrossRef]
  32. C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
    [CrossRef]
  33. Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)
  34. T. P. Mernagh and L. G. Liu, “Temperature dependence of Raman spectra of the quartz- and rutile-types of GeO2,” Phys. Chem. Miner.24(1), 7–16 (1997).
    [CrossRef]
  35. V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
    [CrossRef]
  36. M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
    [CrossRef]
  37. R. G. Hunsperger, Integrated Optics – Theory and Technology (Springer-Verlag 2009), Chap. 6.
  38. S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
    [CrossRef]
  39. A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
    [CrossRef]
  40. P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
    [CrossRef]
  41. Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
    [CrossRef]
  42. J. Lucas, “Infrared glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
    [CrossRef]
  43. D. W. Sheibley and M. H. Fowler, “Infrared spectra of Various metal oxides in the region of 2 to 26 microns. NASA TN D-3750,” Tech. Note U. S. Natl. Aeronaut. Space Adm.D-3750, 1–62 (1967).
    [PubMed]
  44. T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
    [CrossRef]

2013

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

2012

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
[CrossRef]

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012).
[CrossRef] [PubMed]

Q. Liu, K. S. Chiang, L. Reekie, and Y. T. Chow, “CO2 laser induced refractive index changes in optical polymers,” Opt. Express20(1), 576–582 (2012).
[CrossRef] [PubMed]

S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, and M. Ferrari, “High quality factor 1-D Er³⁺-activated dielectric microcavity fabricated by rf-sputtering,” Opt. Express20(19), 21214–21222 (2012).
[CrossRef] [PubMed]

2011

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

2010

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

2009

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

P. Muller-Buschbaum, “A basic introduction to grazing incidence small-angle X-ray scattering,” Lect. Notes Phys.776, 61–89 (2009).

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

2008

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

2007

Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)

2006

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

2005

N. Terakado and K. Tanaka, “Photo-induced phenomena in sputtered GeO2 films,” J. Non-Cryst. Solids351(1), 54–60 (2005).
[CrossRef]

N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).

A. Trukhin and B. Capoen, “Raman and optical reflection spectra of germanate and silicate glasses,” J. Non-Cryst. Solids351(46-48), 3640–3643 (2005).
[CrossRef]

2004

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

2000

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

1999

J. Lucas, “Infrared glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
[CrossRef]

1998

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

1997

T. P. Mernagh and L. G. Liu, “Temperature dependence of Raman spectra of the quartz- and rutile-types of GeO2,” Phys. Chem. Miner.24(1), 7–16 (1997).
[CrossRef]

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater.8(1-2), 37–41 (1997).
[CrossRef]

1994

P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994).
[CrossRef]

1991

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
[CrossRef]

1988

P. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys.60(3), 701–779 (1988).
[CrossRef]

1984

S. Valkealahti and R. M. Nieminen, “Monte Carlo calculations of keV electron and positron slowing down in solids. II,” Appl. Phys., A Mater. Sci. Process.35(1), 51–59 (1984).
[CrossRef]

1982

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

1981

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

1980

S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980).
[CrossRef]

1967

D. W. Sheibley and M. H. Fowler, “Infrared spectra of Various metal oxides in the region of 2 to 26 microns. NASA TN D-3750,” Tech. Note U. S. Natl. Aeronaut. Space Adm.D-3750, 1–62 (1967).
[PubMed]

Aegerter, M. A.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Alombert, G.

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

Alombert-Goget, G.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

Arfuso, C. D.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

Armand, P.

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

Armellini, C.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Asoka-Kumar, P.

P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994).
[CrossRef]

Atuchin, V. V.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Bazzanella, N.

Berneschi, S.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Bettonte, M.

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

Bhaktha, S. N. B.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Bouazaoui, M.

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Boulard, B.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

Boyd, J. T.

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980).
[CrossRef]

Brenci, M.

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Brusa, R. S.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

Capoen, B.

A. Trukhin and B. Capoen, “Raman and optical reflection spectra of germanate and silicate glasses,” J. Non-Cryst. Solids351(46-48), 3640–3643 (2005).
[CrossRef]

Carbajal-Franco, G.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Cerullo, G.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Chen, Y.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Chiang, K. S.

Chiappini, A.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Chiasera, A.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, and M. Ferrari, “High quality factor 1-D Er³⁺-activated dielectric microcavity fabricated by rf-sputtering,” Opt. Express20(19), 21214–21222 (2012).
[CrossRef] [PubMed]

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Chow, Y. T.

Chu, P. K.

Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)

Coppa, A.

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Corni, F.

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

Davis, R. L.

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

de Vries, J.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

Dubrovinsky, L. S.

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

Dutta, S.

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980).
[CrossRef]

Duverger, C.

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012).
[CrossRef] [PubMed]

Feng, L.

Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
[CrossRef]

Ferrante, C.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Ferrari, M.

S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, and M. Ferrari, “High quality factor 1-D Er³⁺-activated dielectric microcavity fabricated by rf-sputtering,” Opt. Express20(19), 21214–21222 (2012).
[CrossRef] [PubMed]

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Foglietti, V.

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Folegati, P.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

Fonthal, F.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

Fowler, M. H.

D. W. Sheibley and M. H. Fowler, “Infrared spectra of Various metal oxides in the region of 2 to 26 microns. NASA TN D-3750,” Tech. Note U. S. Natl. Aeronaut. Space Adm.D-3750, 1–62 (1967).
[PubMed]

Frabboni, S.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

Fraysse, G.

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

Gao, Y.

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

Gavrilova, T. A.

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Gillet, P.

M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
[CrossRef]

Gonçalves, R. R.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Goyes, C.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

Gromilov, S. A.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Guddala, S.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

Hakvoort, R. A.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

Hermet, P.

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

Hickernell, F. S.

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

Hidaka, T.

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
[CrossRef]

Huy, P. T.

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Ijpma, M. R.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

Jackson, H. E.

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980).
[CrossRef]

Jestin, Y.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Jiang, N.

N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).

Jones, J. R.

A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
[CrossRef]

Julien, C.

M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
[CrossRef]

Karwasz, G. P.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

Kasuga, T.

A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
[CrossRef]

Kong, M.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Kostrovsky, V. G.

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Kumada, K.

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
[CrossRef]

Li, S.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Liang, X.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Lignie, A.

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

Liu, L. G.

T. P. Mernagh and L. G. Liu, “Temperature dependence of Raman spectra of the quartz- and rutile-types of GeO2,” Phys. Chem. Miner.24(1), 7–16 (1997).
[CrossRef]

Liu, Q.

Q. Liu, K. S. Chiang, L. Reekie, and Y. T. Chow, “CO2 laser induced refractive index changes in optical polymers,” Opt. Express20(1), 576–582 (2012).
[CrossRef] [PubMed]

Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
[CrossRef]

Liu, Z.

Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
[CrossRef]

Lucas, J.

J. Lucas, “Infrared glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
[CrossRef]

Lynn, K. G.

P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994).
[CrossRef]

P. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys.60(3), 701–779 (1988).
[CrossRef]

Macchi, C.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

Madon, M.

M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
[CrossRef]

Mariazzi, S.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

Meng, X.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Mernagh, T. P.

T. P. Mernagh and L. G. Liu, “Temperature dependence of Raman spectra of the quartz- and rutile-types of GeO2,” Phys. Chem. Miner.24(1), 7–16 (1997).
[CrossRef]

Messaddeq, Y.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Montagna, M.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Morikawa, T.

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
[CrossRef]

Moser, E.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Muller-Buschbaum, P.

P. Muller-Buschbaum, “A basic introduction to grazing incidence small-angle X-ray scattering,” Lect. Notes Phys.776, 61–89 (2009).

Nieminen, R. M.

S. Valkealahti and R. M. Nieminen, “Monte Carlo calculations of keV electron and positron slowing down in solids. II,” Appl. Phys., A Mater. Sci. Process.35(1), 51–59 (1984).
[CrossRef]

Nunzi Conti, G.

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Obata, A.

A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
[CrossRef]

Ottaviani, G.

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

Papet, P.

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

Paridaens, J.

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

Pelli, S.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Pokrovsky, L. D.

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Pontecorvo, E.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Prakapenk, V. P.

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

Price, G. D.

M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
[CrossRef]

Prudenzano, F.

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

Qiu, J.

N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).

Ramana, C. V.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Rao, D. N.

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012).
[CrossRef] [PubMed]

Reekie, L.

Reisfeld, R.

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater.8(1-2), 37–41 (1997).
[CrossRef]

Ribeiro, S. J. L.

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Righini, G. C.

S. Valligatla, A. Chiasera, S. Varas, N. Bazzanella, D. N. Rao, G. C. Righini, and M. Ferrari, “High quality factor 1-D Er³⁺-activated dielectric microcavity fabricated by rf-sputtering,” Opt. Express20(19), 21214–21222 (2012).
[CrossRef] [PubMed]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Rivers, M. L.

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

Ruocco, G.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Savelii, I.

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

Schirmacher, W.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012).
[CrossRef] [PubMed]

Schultz, P.

P. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys.60(3), 701–779 (1988).
[CrossRef]

Schut, H.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

Scopigno, T.

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Sebastiani, S.

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Sheibley, D. W.

D. W. Sheibley and M. H. Fowler, “Infrared spectra of Various metal oxides in the region of 2 to 26 microns. NASA TN D-3750,” Tech. Note U. S. Natl. Aeronaut. Space Adm.D-3750, 1–62 (1967).
[PubMed]

Shen, G.

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

Shimada, J.

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
[CrossRef]

Shinya, A.

A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
[CrossRef]

Solarte, E.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

Soria, S.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

Spence, J. C. H.

N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).

Speranza, G.

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Su, Y.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Sutton, S. R.

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

Tanaka, K.

N. Terakado and K. Tanaka, “Photo-induced phenomena in sputtered GeO2 films,” J. Non-Cryst. Solids351(1), 54–60 (2005).
[CrossRef]

Terakado, N.

N. Terakado and K. Tanaka, “Photo-induced phenomena in sputtered GeO2 films,” J. Non-Cryst. Solids351(1), 54–60 (2005).
[CrossRef]

Tian, H.

Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
[CrossRef]

Tiengo, N.

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

Tonelli, F.

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Tonini, R.

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

Tosello, C.

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

Tran Ngoc, K.

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

Troitskaia, I. B.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Trukhin, A.

A. Trukhin and B. Capoen, “Raman and optical reflection spectra of germanate and silicate glasses,” J. Non-Cryst. Solids351(46-48), 3640–3643 (2005).
[CrossRef]

Turrell, S.

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Valkealahti, S.

S. Valkealahti and R. M. Nieminen, “Monte Carlo calculations of keV electron and positron slowing down in solids. II,” Appl. Phys., A Mater. Sci. Process.35(1), 51–59 (1984).
[CrossRef]

Valligatla, S.

Van Veen, A.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

Varas, S.

Vemuri, R. S.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Welch, D. O.

P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994).
[CrossRef]

Yang, L. W.

Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)

Yang, Y. M.

Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)

Yin, S.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Zecca, A.

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

Zevin, M.

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater.8(1-2), 37–41 (1997).
[CrossRef]

Zhou, Q.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Advances in Science and Technology

B. Boulard, G. Alombert, I. Savelii, C. D. Arfuso, Y. Gao, M. Ferrari, and F. Prudenzano, “Er/Yb3+/Ce3+ co-doped fluoride glass ceramics waveguides for application in the 1.5 µm telecommunication window,” Advances in Science and Technology71, 16–21 (2010).
[CrossRef]

AIP Conf. Proc.

A. Van Veen, H. Schut, J. de Vries, R. A. Hakvoort, and M. R. Ijpma, “Analysis of positron profiling data by means of VEPFIT,” AIP Conf. Proc.218, 171–198 (1991).
[CrossRef]

Appl. Phys. Lett.

N. Jiang, J. Qiu, and J. C. H. Spence, “Precipitation of Ge nanoparticles from GeO2 glasses in transmission electron microscope,” Appl. Phys. Lett.86, 143112–1–143112–3 (2005).

S. J. L. Ribeiro, Y. Messaddeq, R. R. Gonçalves, M. Ferrari, M. Montagna, and M. A. Aegerter, “Low optical loss planar waveguides prepared by an organic-inorganic hybrid system,” Appl. Phys. Lett.77(22), 3502–3504 (2000).
[CrossRef]

Y. M. Yang, L. W. Yang, and P. K. Chu, “Polarized Raman scattering of Ge nanocrystals embedded in a-SiO2,” Appl. Phys. Lett.90, 081909-1–081909-3 (2007)

G. Nunzi Conti, S. Berneschi, M. Brenci, S. Pelli, S. Sebastiani, G. C. Righini, C. Tosello, A. Chiasera, and M. Ferrari, “UV photoimprinting of channel waveguides on active SiO2–GeO2 sputtered thin films,” Appl. Phys. Lett.89, 121102–1–121102–3 (2006).

S. Dutta, H. E. Jackson, and J. T. Boyd, “Reduction of scattering from a glass thin-film optical waveguide by CO2 laser annealing,” Appl. Phys. Lett.37(6), 512–514 (1980).
[CrossRef]

S. Dutta, H. E. Jackson, J. T. Boyd, F. S. Hickernell, and R. L. Davis, “Scattering loss reduction in ZnO optical waveguides by laser annealing,” Appl. Phys. Lett.39(3), 206–208 (1981).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

S. Valkealahti and R. M. Nieminen, “Monte Carlo calculations of keV electron and positron slowing down in solids. II,” Appl. Phys., A Mater. Sci. Process.35(1), 51–59 (1984).
[CrossRef]

Cryst. Growth Des.

V. V. Atuchin, T. A. Gavrilova, S. A. Gromilov, V. G. Kostrovsky, L. D. Pokrovsky, I. B. Troitskaia, R. S. Vemuri, G. Carbajal-Franco, and C. V. Ramana, “Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with α-quartz structure,” Cryst. Growth Des.9(4), 1829–1832 (2009).
[CrossRef]

Curr. Opin. Solid State Mater. Sci.

J. Lucas, “Infrared glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
[CrossRef]

IEEE J. Quantum Electron.

S. Dutta, H. E. Jackson, J. T. Boyd, R. L. Davis, and F. S. Hickernell, “CO2 laser annealing of Si3N4, Nb2O5 and Ta2O5 thin-film optical waveguides to achieve scattering loss reduction,” IEEE J. Quantum Electron.18, 800–806 (1982).
[CrossRef]

Int. J. Appl. Ceram. Technol.

A. Obata, J. R. Jones, A. Shinya, and T. Kasuga, “Sintering and crystallization of phosphate glasses by CO2-laser irradiation on hydroxyapatite ceramics,” Int. J. Appl. Ceram. Technol.9(3), 541–549 (2012).
[CrossRef]

J. Appl. Phys.

T. Hidaka, K. Kumada, J. Shimada, and T. Morikawa, “GeO2-ZnO-K2O glass as the cladding material of 940 cm−1 CO2 laser-light transmitting hollow-core waveguide,” J. Appl. Phys.53(8), 5484–5490 (1982).
[CrossRef]

P. Asoka-Kumar, K. G. Lynn, and D. O. Welch, “Characterization of defects in Si and SiO2−Si using positrons,” J. Appl. Phys.76(9), 4935–4982 (1994).
[CrossRef]

S. Dutta, H. E. Jackson, and J. T. Boyd, “Extremely low-loss glass thin-film optical waveguides utilizing surface coating and laser annealing,” J. Appl. Phys.52(6), 3873–3875 (1981).
[CrossRef]

J. Non-Cryst. Solids

A. Trukhin and B. Capoen, “Raman and optical reflection spectra of germanate and silicate glasses,” J. Non-Cryst. Solids351(46-48), 3640–3643 (2005).
[CrossRef]

A. Chiasera, C. Armellini, S. N. B. Bhaktha, A. Chiappini, Y. Jestin, M. Ferrari, E. Moser, A. Coppa, V. Foglietti, P. T. Huy, K. Tran Ngoc, G. Nunzi Conti, S. Pelli, G. C. Righini, and G. Speranza, “Er3+/Yb3+-activated silica-hafnia planar waveguides for photonics fabricated by rf-sputtering,” J. Non-Cryst. Solids355(18-21), 1176–1179 (2009).
[CrossRef]

N. Terakado and K. Tanaka, “Photo-induced phenomena in sputtered GeO2 films,” J. Non-Cryst. Solids351(1), 54–60 (2005).
[CrossRef]

J. Phys. Chem. C

P. Hermet, G. Fraysse, A. Lignie, P. Armand, and P. Papet, “Density functional theory predictions of the nonlinear optical properties in α-Quartz-type germanium dioxide,” J. Phys. Chem. C116(15), 8692–8698 (2012).
[CrossRef]

J. Phys. Chem. Solids

V. P. Prakapenk, G. Shen, L. S. Dubrovinsky, M. L. Rivers, and S. R. Sutton, “High pressure induced phase transformation of SiO2 and GeO2: difference and similarity,” J. Phys. Chem. Solids65, 1537–1545 (2004).

Lect. Notes Phys.

P. Muller-Buschbaum, “A basic introduction to grazing incidence small-angle X-ray scattering,” Lect. Notes Phys.776, 61–89 (2009).

Mater. Lett.

Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, X. Meng, and M. Kong, “Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays,” Mater. Lett.62(6-7), 1010–1013 (2008).
[CrossRef]

Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.

C. V. Ramana, G. Carbajal-Franco, R. S. Vemuri, I. B. Troitskaia, S. A. Gromilov, and V. V. Atuchin, “Optical properties and thermal stability of germanium oxide (GeO2) nanocrystals with α-quartz structure,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater.174(1-3), 279–284 (2010).
[CrossRef]

Meas. Sci. Technol.

A. Zecca, M. Bettonte, J. Paridaens, G. P. Karwasz, and R. S. Brusa, “A new electrostatic positron beam for surface studies,” Meas. Sci. Technol.9(3), 409–416 (1998).
[CrossRef]

Nat Commun

C. Ferrante, E. Pontecorvo, G. Cerullo, A. Chiasera, G. Ruocco, W. Schirmacher, and T. Scopigno, “Acoustic dynamics of network-forming glasses at mesoscopic wavelengths,” Nat Commun4, 1793-1–1793- 6 (2013).
[CrossRef] [PubMed]

Nat. Methods

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods9(7), 671–675 (2012).
[CrossRef] [PubMed]

Opt. Eng.

A. Chiasera, G. Alombert-Goget, M. Ferrari, S. Berneschi, S. Pelli, B. Boulard, and C. D. Arfuso, “Rare earth–activated glass-ceramic in planar format,” Opt. Eng.50, 071105–1–071105–10 (2011).

Opt. Express

Opt. Mater.

C. Goyes, M. Ferrari, C. Armellini, A. Chiasera, Y. Jestin, G. C. Righini, F. Fonthal, and E. Solarte, “CO2 laser annealing on erbium-activated glass–ceramic waveguides for photonics,” Opt. Mater.31(9), 1310–1314 (2009).
[CrossRef]

M. Zevin and R. Reisfeld, “Preparation and properties of active waveguides based on zirconia glasses,” Opt. Mater.8(1-2), 37–41 (1997).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

S. Berneschi, S. Soria, G. C. Righini, G. Alombert-Goget, A. Chiappini, A. Chiasera, Y. Jestin, M. Ferrari, S. Guddala, E. Moser, S. N. B. Bhaktha, B. Boulard, C. D. Arfuso, and S. Turrell, “Rare-earth-activated glass–ceramic waveguides,” Opt. Mater.32(12), 1644–1647 (2010).
[CrossRef]

Philos. Mag. B

C. Duverger, S. Turrell, M. Bouazaoui, F. Tonelli, M. Montagna, and M. Ferrari, “Preparation of SiO2-GeO2:Eu3+ planar waveguides and characterisation by waveguide Raman and luminescence spectroscopies,” Philos. Mag. B77(2), 363–372 (1998).
[CrossRef]

Phys. Chem. Miner.

M. Madon, P. Gillet, C. Julien, and G. D. Price, “A vibrational study of phase transitions among the GeO2 polymorphs,” Phys. Chem. Miner.18(1), 7–18 (1991).
[CrossRef]

T. P. Mernagh and L. G. Liu, “Temperature dependence of Raman spectra of the quartz- and rutile-types of GeO2,” Phys. Chem. Miner.24(1), 7–16 (1997).
[CrossRef]

Phys. Rev. B

C. Macchi, S. Mariazzi, G. P. Karwasz, R. S. Brusa, P. Folegati, S. Frabboni, and G. Ottaviani, “Single-crystal silicon coimplanted by helium and hydrogen: evolution of decorated vacancylike defects with thermal treatments,” Phys. Rev. B74(17), 174120 (2006).
[CrossRef]

R. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, R. Tonini, and G. Ottaviani, “Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy,” Phys. Rev. B61(15), 10154–10166 (2000).
[CrossRef]

Rev. Mod. Phys.

P. Schultz and K. G. Lynn, “Interaction of positron beams with surfaces, thin films, and interfaces,” Rev. Mod. Phys.60(3), 701–779 (1988).
[CrossRef]

Solid State Sci.

Q. Liu, Z. Liu, L. Feng, and H. Tian, “First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and a-quartz GeO2,” Solid State Sci.12(10), 1748–1755 (2010).
[CrossRef]

Tech. Note U. S. Natl. Aeronaut. Space Adm.

D. W. Sheibley and M. H. Fowler, “Infrared spectra of Various metal oxides in the region of 2 to 26 microns. NASA TN D-3750,” Tech. Note U. S. Natl. Aeronaut. Space Adm.D-3750, 1–62 (1967).
[PubMed]

Other

P. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000).

R. G. Hunsperger, Integrated Optics – Theory and Technology (Springer-Verlag 2009), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Micro Raman measurements carried out at room temperature for GeO2 planar waveguide.

Fig. 2
Fig. 2

AFM images of representative 1.8 x 1.8 µm2 areas of the samples in the conditions: (a) as prepared and (b) after 2h of CO2 laser irradiation. Z scale 10 nm. In (c) a comparison of typical height profiles in these two conditions, corresponding to sections 1 in panels (a) and (b), showing a decrease in roughness after irradiation is presented. (d) profiles of the nanometric structures found after irradiation - sections 2 and 3 in panel (b).

Fig. 3
Fig. 3

Normalized shape parameter Sn as a function of the positron implantation energy for the as prepared and after 2h CO2 laser irradiated GeO2 samples. In the upper scale the mean positron implantation depth is reported. Solid lines represent the best fit obtained using the VEPFIT program (see text). The vertical dash-dotted line points out the interface limit between the film and the silica substrate.

Fig. 4
Fig. 4

Scheme of the nanostructural transformation of the GeO2 films as a function of the depth measured from the surface of the sample and the irradiation time. As shown in this scheme, besides the silica substrate (ρ = 2.1 g/cm3) different layers in the GeO2 films are detected by positron spectroscopy. From the fitting of the positron data reported in Fig. 3, a density value of ρ = 3.15 g/cm3 for the GeO2 was obtained (see text).

Tables (2)

Tables Icon

Table 1 Optical parameters for the samples as prepared and after CO2 laser irradiation for 2h.

Tables Icon

Table 2 Sn values characterizing each layer in the as prepared and the two irradiated samples, as obtained by fitting the positron depth profiles. The density value of the GeO2 film was used as a guess parameter into the frame of the fitting procedure. The boundary depths are measured from the surface of the sample.

Metrics