Abstract

In this article we review a selection of recent results on long-wave quantum cascade lasers both for high power and for single-mode emission. Both MBE-grown and MOCVD-grown devices are examined and compared. Currently, LWIR QC lasers exhibit output powers in the Watt-level range and up to double-digit conversion efficiencies in the best cases.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  2. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
    [CrossRef]
  3. M. Troccoli, J. Fan, G. Tsvid, and X. Wang, “High performance Quantum Cascade lasers for industrial applications,” in The Wonders of Nanotechnology, M. Razeghi, ed. (SPIE press, 2013), pp. 225–241.
  4. M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008).
    [CrossRef]
  5. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
    [CrossRef] [PubMed]
  6. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012).
    [CrossRef] [PubMed]
  7. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).
  8. F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).
  9. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
    [CrossRef]
  10. N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
    [CrossRef]
  11. D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
    [CrossRef]
  12. Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
    [CrossRef]
  13. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
    [CrossRef] [PubMed]
  14. Y. Al, Cho, Molecular Beam Epitaxy (AIP Press, 1997).
  15. M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
    [CrossRef]
  16. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
    [CrossRef]
  17. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
    [CrossRef]
  18. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
    [CrossRef]
  19. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
    [CrossRef]
  20. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
    [CrossRef] [PubMed]
  21. S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
    [CrossRef]
  22. A. Lyakh, R. Maulini, and A. Tsekoun, C. Kumar, N. Patel, L. Diehl, C. Pflügl, Q. Wang and F. Capasso, U. S. Patent #8,014,430 (September 6, 2011).
  23. V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
    [CrossRef]
  24. R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

2013 (2)

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

2012 (3)

2011 (2)

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

2010 (5)

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

2009 (2)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

2008 (1)

2006 (1)

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

2005 (1)

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

2004 (1)

V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
[CrossRef]

2002 (2)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Aleksandrova, A.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Assayag, O.

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Bai, Y.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

Bandyopadhyay, N.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Belkin, M. A.

Botez, D.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

Bour, D.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Bour, D. P.

Bradshaw, J. L.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Caffey, D.P.

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Caneau, C.

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Capasso, F.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Cho, A. Y.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Corzine, S.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Corzine, S. W.

Darvish, S. R.

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

Day, T.

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Diehl, L.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Elagin, M.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Faist, J.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Fan, J.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).

Flores, Y. V.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Gmachl, C.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
[CrossRef]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Gokden, B.

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

Hoefler, G.

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Höfler, G.

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Hughes, L.C.

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Kischkat, J.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Kumar, S.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

Kurlov, S.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Lascola, K. M.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Leavitt, R. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Leblanc, H.P.

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Lee, B. G.

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Lewicki, R.

Loncar, M.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Masselink, W. T.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Mawst, L. J.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

Meissner, G. P.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Meyer, J. R.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

Micalizzi, F.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Monastyrskyi, G.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Patel, C. K. N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Pflügl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Pham, J. T.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Razeghi, M.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

Scamarcio, G.

V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
[CrossRef]

Schrenk, W.

V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
[CrossRef]

Semtsiv, M. P.

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

Shin, J. C.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Slivken, S.

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

Spagnolo, V.

V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
[CrossRef]

Strasser, G.

V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
[CrossRef]

Tittel, F. K.

Towner, F. J.

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

Troccoli, M.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).

M. Troccoli, L. Diehl, D. P. Bour, S. W. Corzine, N. Yu, C. Y. Wang, M. A. Belkin, G. Höfler, R. Lewicki, G. Wysocki, F. K. Tittel, and F. Capasso, “High performance quantum cascade lasers grown by metal-organic vapor phase epitaxy and their applications to trace gas sensing,” J. Lightwave Technol.26(21), 3534–3555 (2008).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express20(22), 24272–24279 (2012).
[CrossRef] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express19(18), 17203–17211 (2011).
[CrossRef] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Von der Porten, S.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

Vurgaftman, I.

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

Wang, C. Y.

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

Wang, X.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).

Wysocki, G.

Xie, F.

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Yu, N.

Zah, Chung-en

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Zhu, J.

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011).
[CrossRef]

N. Bandyopadhyay, S. Slivken, Y. Bai, and M. Razeghi, “High power, continuous wave, room temperature operation of λ =3.4 μm and λ =3.55 μm InP-based quantum cascade lasers,” Appl. Phys. Lett.100(21), 212104 (2012).
[CrossRef]

D. Botez, S. Kumar, J. C. Shin, L. J. Mawst, I. Vurgaftman, and J. R. Meyer, “Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers,” Appl. Phys. Lett.97(7), 071101–071103 (2010).
[CrossRef]

L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, M. Loncar, M. Troccoli, and F. Capasso, “High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett.89(8), 081101–081103 (2006).
[CrossRef]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, and C. K. N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett.95(14), 141113 (2009).
[CrossRef]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett.95(15), 151112 (2009).
[CrossRef]

Electron. Lett. (1)

M. Troccoli, S. Corzine, D. Bour, J. Zhu, O. Assayag, L. Diehl, B. G. Lee, G. Hoefler, and F. Capasso, “Room temperature continuous wave operation of quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Electron. Lett.41(19), 1059–1061 (2005).
[CrossRef]

High-performance quantum cascade lasers in the 7.3- to 7.8-µm wavelength band using strained active regions (1)

R. P. Leavitt, J. L. Bradshaw, K. M. Lascola, G. P. Meissner, F. Micalizzi, F. J. Towner, and J. T. Pham, “High-performance quantum cascade lasers in the 7.3- to 7.8-μm wavelength band using strained active regions,” Opt. Eng.49, 111109 (2010).

J. Appl. Phys. (1)

Y. V. Flores, M. P. Semtsiv, M. Elagin, G. Monastyrskyi, S. Kurlov, A. Aleksandrova, J. Kischkat, and W. T. Masselink, “Thermally activated leakage current in high-performance short-wavelength quantum cascade lasers,” J. Appl. Phys.113(13), 134506 (2013).
[CrossRef]

J. Lightwave Technol. (1)

J. of Quant. Electron. (1)

F. Xie, C. Caneau, H.P. Leblanc, D.P. Caffey, L.C. Hughes, T. Day, and Chung-en Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ >10 μm,”, J. of Quant. Electron.19, 1200407–1200412 (2013).

Opt. Express (3)

Phys. Today (1)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, “Quantum cascade lasers,” Phys. Today55(5), 34–38 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, S. Von der Porten, C. Pflügl, L. Diehl, F. Capasso, and C. K. N. Patel, “High-performance continuous-wave room temperature 4.0-μm quantum cascade lasers with single-facet optical emission exceeding 2 W,” Proc. Natl. Acad. Sci. U.S.A.107(44), 18802–18805 (2010).
[CrossRef]

Proc. SPIE (1)

S. Slivken, Y. Bai, B. Gokden, S. R. Darvish, and M. Razeghi, “Current status and potential of high-power mid-infrared intersubband lasers,” Proc. SPIE7608, 76080B (2010).
[CrossRef]

Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (?>6 µm) (1)

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-waveinfrared (λ>6 μm),” Opt. Eng. 49111106 (2010).

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science295(5553), 301–305 (2002).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (1)

V. Spagnolo, G. Scamarcio, W. Schrenk, and G. Strasser, “Influence of the band-offset on the electronic temperature of GaAs/Al(Ga)As superlattice quantum cascade lasers,” Semicond. Sci. Technol.19(4), S110–S112 (2004).
[CrossRef]

Other (3)

A. Lyakh, R. Maulini, and A. Tsekoun, C. Kumar, N. Patel, L. Diehl, C. Pflügl, Q. Wang and F. Capasso, U. S. Patent #8,014,430 (September 6, 2011).

M. Troccoli, J. Fan, G. Tsvid, and X. Wang, “High performance Quantum Cascade lasers for industrial applications,” in The Wonders of Nanotechnology, M. Razeghi, ed. (SPIE press, 2013), pp. 225–241.

Y. Al, Cho, Molecular Beam Epitaxy (AIP Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Band diagram of a quantum cascade laser structure based on In0.58Ga0.42As/Al0.64In0.36As composition and designed using non-resonant extraction principle for light emission at 9 μm.

Fig. 2
Fig. 2

Pulsed mode optical power and Voltage vs. Current characteristics of 3 QCL devices grown with the same structure and different doping levels in the active material. From lowest to highest doping, the increased doping density initially allows for higher injected currents thus for higher power outputs, but as the doping is increased even further, the increased threshold and worse slope efficiency will affect the CW performances.

Fig. 3
Fig. 3

CW Optical power- and Voltage-Current characteristics of a λ = 7.8μm FP laser. Higher output powers can be achieved with broader devices.

Fig. 4
Fig. 4

Voltage-current (left) and optical power-current (right) characteristic of a FP BH device emitting at λ~9μm, epilayer side-down mounted on a CS-mount with HR coating on the back facet. The emitter was 5mm long and 12μm wide.

Fig. 5
Fig. 5

CW emission spectrum of high power (P = 1W) QCL device on CS-mount.

Fig. 6
Fig. 6

Optical power- and voltage-current pulsed characteristics of a 6mm long QCL device measured at RT from a device with HR coated back facet installed epilayer side-down on a CS-type mount.

Fig. 7
Fig. 7

Spectrum (left) and optical power-current characteristic (right) of a 5mm long QCL soldered to a CS-type mount and operated in pulsed mode at room temperature.

Fig. 8
Fig. 8

CW characteristics of λ = 10.5μm QC laser at room temperature.

Fig. 9
Fig. 9

(a) Electroluminescence spectra of a round mesa at threshold and roll-over voltages (298K); (b) Dependence of electroluminescence linewidth on voltage.

Fig. 10
Fig. 10

Comparison between pulsed and CW total optical power vs current and voltage vs current characteristics measured at 293K for an uncoated 3mm by 10µm laser mounted epi-down on a AlN/SiC composite submount. Inset shows pulsed laser spectrum taken at maximum current.

Fig. 11
Fig. 11

Pulsed optical power vs current and voltage vs current characteristics measured at 300K for a quantum cascade laser based on high-strain composition with E54≈80meV .

Fig. 12
Fig. 12

Voltage-current, optical power-current, and spectral characteristics for a λ = 7.43μm DFB laser with AR/HR coating, mounted epi-side down on a C-type mount and operated in CW. Data are collected with a collimating aspherical lens of ~3mm diameter. Spectra were recorded at I = 0.5A

Fig. 13
Fig. 13

CW DFB QC laser characteristics at λ = 7.83μm emission wavelength. The tuning coefficient is ~0.6nm/K, slightly larger than the typical values in the 0.4-0.5nm/K range. The slope efficiency stays quite constant up to rollover current so that the maximum efficiency (5.3%) is attained close to maximum current.

Fig. 14
Fig. 14

Electro-optical and spectral characteristics of DFB QC lasers emitting at λ = 9.5μm at room temperature when operated in CW mode. The devices were bonded epi-side down on a C-type mount. AR/HR coatings were applied to the front / back facets, respectively. Spectra were recorded at I = 0.6A.

Metrics