Abstract

Mid-infrared (MIR, 2 - 6 μm wavelength) transparent metal oxides are attractive materials for planar integrated MIR photonic devices and sensing applications. In this report, we present reactive sputtering deposited ZrO2-TiO2 (ZTO) thin films as a new material candidate for integrated MIR photonics. The material structure and optical properties were systematically studied as a function of Ti concentration. The thin film index of refraction monotonically increases with Ti concentration, while the film crystallinity decreases. Fully amorphous ZTO films were achieved with 40 at.% Ti doping on various substrates. MIR micro-disk resonators on MgO substrates were demonstrated using Zr0.6Ti0.4O2 strip-loaded waveguides with a loaded quality factor of ~11,000 at 5.2 μm wavelength.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)
  2. Y. Xia, C. Qiu, X. Zhang, W. Gao, J. Shu, and Q. Xu, “Suspended Si ring resonator for mid-IR application,” Opt. Lett.38(7), 1122–1124 (2013).
    [CrossRef] [PubMed]
  3. C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
    [CrossRef]
  4. A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
    [CrossRef]
  5. R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
    [CrossRef]
  6. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
    [CrossRef] [PubMed]
  7. R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011).
    [CrossRef] [PubMed]
  8. H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett.38(15), 2779–2782 (2013).
    [CrossRef] [PubMed]
  9. J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in IEEE Photonics Society 2010 23rd Annual Meeting, (IEEE, 2011), pp. 313–314.
  10. S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).
  11. R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
    [CrossRef]
  12. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012).
    [CrossRef] [PubMed]
  13. “Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology, Robert W. Boyd and George L. Fischer, eds. (Elsevier, 2001).
  14. D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt.21(16), 2978–2981 (1982).
    [CrossRef] [PubMed]
  15. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  16. J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt.51(28), 6789–6798 (2012).
    [CrossRef] [PubMed]
  17. D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Phys. Rev.87(5), 876–886 (1952).
    [CrossRef]
  18. J. Hu, V. Tarasov, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express15(19), 11798–11807 (2007).
    [CrossRef] [PubMed]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15(5), 2307–2314 (2007).
    [CrossRef] [PubMed]
  20. U. Troitzsch and D. J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci.40(17), 4571–4577 (2005).
    [CrossRef]
  21. L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
    [CrossRef]
  22. M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
    [CrossRef]
  23. B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
    [CrossRef]
  24. S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
    [CrossRef]
  25. B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
    [CrossRef]
  26. Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
    [CrossRef]
  27. R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
    [CrossRef] [PubMed]
  28. R. Swanepoel, “Determination of the thickness and optical constant of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
    [CrossRef]
  29. J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
    [CrossRef]
  30. R. Singh, M. Kumar, and S. Chandra, “Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications,” J. Mater. Sci.42(12), 4675–4683 (2007).
    [CrossRef]
  31. X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B65(7), 075105 (2002).
    [CrossRef]
  32. A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
    [CrossRef]
  33. D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev.113(5), 1222–1226 (1959).
    [CrossRef]

2013

2012

J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur, and M. Lončar, “Integrated TiO2 resonators for visible photonics,” Opt. Lett.37(4), 539–541 (2012).
[CrossRef] [PubMed]

J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, “Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride,” Appl. Opt.51(28), 6789–6798 (2012).
[CrossRef] [PubMed]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

2011

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011).
[CrossRef] [PubMed]

2010

A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
[CrossRef]

2009

L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
[CrossRef]

2007

2005

U. Troitzsch and D. J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci.40(17), 4571–4577 (2005).
[CrossRef]

2004

Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
[CrossRef]

2003

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

2002

B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
[CrossRef]

X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B65(7), 075105 (2002).
[CrossRef]

1994

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

1993

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

1983

R. Swanepoel, “Determination of the thickness and optical constant of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

1982

1959

D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev.113(5), 1222–1226 (1959).
[CrossRef]

1952

D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Phys. Rev.87(5), 876–886 (1952).
[CrossRef]

Adhikary, N. C.

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

Agarwal, A.

Aleksandrova, A.

Baehr-Jones, T.

A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
[CrossRef]

Baets, R.

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)

Bailung, H.

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

Bellotto, M.

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

Berglund, W.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

Bradley, J. D. B.

Braga Marcazzan, G. M.

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

Bulu, I.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011).
[CrossRef] [PubMed]

Burgess, I. B.

Cai, B.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

Caridi, A.

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

Carlie, N.

Cereda, E.

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

Chandra, S.

R. Singh, M. Kumar, and S. Chandra, “Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications,” J. Mater. Sci.42(12), 4675–4683 (2007).
[CrossRef]

Chang, J. P.

B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
[CrossRef]

Chashnikova, M.

Chen, X.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Chen, Y.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Cheng, Z.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).

Ching, W. Y.

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

Cho, B.

B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
[CrossRef]

Choy, J. T.

Chutia, J.

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

Cronemeyer, D. C.

D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev.113(5), 1222–1226 (1959).
[CrossRef]

D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Phys. Rev.87(5), 876–886 (1952).
[CrossRef]

Danto, S.

Deng, F.

Deotare, P. B.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Diware, M.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Drabold, D. A.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

Ellis, D. J.

U. Troitzsch and D. J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci.40(17), 4571–4577 (2005).
[CrossRef]

Evans, C. C.

Fathpour, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).

Fedosenko, O.

Feng, N. N.

Flores, Y.

Ford, C.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

French, R. H.

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

Fung, C. K. Y.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Gabetta, G.

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

Gao, W.

Gao, Y.

Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
[CrossRef]

Ghisleni, R.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

Glass, S. J.

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

Gopinath, A.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

Gruska, B.

Hattasan, N.

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)

Heiroth, S.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

Hochberg, M.

A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
[CrossRef]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Hu, J.

Hwang, S. M.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Hwang, S. Y.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Joo, J.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).

Kim, T. J.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Kim, Y. D.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Kimerling, L.

Kimerling, L. C.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Kischkat, J.

Klinkmüller, M.

Koumoto, K.

Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
[CrossRef]

Kozacik, S.

Kumar, M.

R. Singh, M. Kumar, and S. Chandra, “Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications,” J. Mater. Sci.42(12), 4675–4683 (2007).
[CrossRef]

Kuyken, B.

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)

Lee, S. M.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Leijssen, R.

Leo, F.

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)

Lewis, J. P.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

Li, L.

Lin, H.

Lin, P. T.

Lippert, T.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
[CrossRef]

Loncar, M.

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).

Machulik, S.

Masselink, W. T.

Masuda, Y.

Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
[CrossRef]

Mazur, E.

Michler, J.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

Monastyrskyi, G.

Murakowski, M.

Musgraves, J. D.

Nassau, K.

Ni, C.

Ohta, H.

Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
[CrossRef]

Ohuchi, F. S.

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

Pal, A. R.

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

Peters, S.

Petit, L.

Prasai, B.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

Prather, D.

Qiu, C.

Ramberg, R.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

Richardson, K.

Roelkens, G.

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)

Sarma, B. K.

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

Scagliotti, M.

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

Schermer, R.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

Semtsiv, M.

Sha, L.

B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
[CrossRef]

Shankar, R.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

R. Shankar, R. Leijssen, I. Bulu, and M. Lončar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express19(6), 5579–5586 (2011).
[CrossRef] [PubMed]

Shu, J.

Singh, R.

R. Singh, M. Kumar, and S. Chandra, “Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications,” J. Mater. Sci.42(12), 4675–4683 (2007).
[CrossRef]

Singh, V.

Spott, A.

A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
[CrossRef]

Swanepoel, R.

R. Swanepoel, “Determination of the thickness and optical constant of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

Tarasov, V.

Troitzsch, U.

U. Troitzsch and D. J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci.40(17), 4571–4577 (2005).
[CrossRef]

Tsang, H. K.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Underwood, M. K.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

Vanderbilt, D.

X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B65(7), 075105 (2002).
[CrossRef]

Wang, J.

B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
[CrossRef]

Wang, X. Q.

L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
[CrossRef]

Wokaun, A.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

Wong, C. Y.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Wood, D. L.

Xia, Y.

Xu, D.

L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
[CrossRef]

Xu, K.

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

Xu, Q.

Xu, Y. N.

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

Yoon, J. J.

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Yu, G.

L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
[CrossRef]

Zhang, X.

Zhao, X.

X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B65(7), 075105 (2002).
[CrossRef]

Zhu, L. Y.

L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
[CrossRef]

Zou, Y.

Acta Mater.

S. Heiroth, R. Ghisleni, T. Lippert, J. Michler, and A. Wokaun, “Optical and mechanical properties of amorphous and crystalline yttria-stabilized zirconia thin films prepared by pulsed laser deposition,” Acta Mater.59(6), 2330–2340 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Cho, J. Wang, L. Sha, and J. P. Chang, “Tuning the electrical properties of zirconium oxide thin films,” Appl. Phys. Lett.80(6), 1052–1054 (2002).
[CrossRef]

M. Bellotto, A. Caridi, E. Cereda, G. Gabetta, M. Scagliotti, and G. M. Braga Marcazzan, “Influence of the oxygen stoichiometry on the structural and optical properties of reactively evaporated ZrO_xfilms,” Appl. Phys. Lett.63(15), 2056–2058 (1993).
[CrossRef]

A. Spott, Y. Liu, T. Baehr-Jones, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5 μm,” Appl. Phys. Lett.97(21), 213501 (2010).
[CrossRef]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, Appl. Phys. Lett.102, 091105 (2012).

Appl. Surf. Sci.

A. R. Pal, B. K. Sarma, N. C. Adhikary, J. Chutia, and H. Bailung, “TiO2 polyaniline nanocomposite films prepared by magnetron sputtering combined with plasma polymerization process,” Appl. Surf. Sci.258(3), 1199–1205 (2011).
[CrossRef]

Chem. Mater.

Y. Gao, Y. Masuda, H. Ohta, and K. Koumoto, “Room-temperature preparation of ZrO2 precursor thin film in an aqueous peroxozirconium-complex Solution,” Chem. Mater.16(13), 2615–2622 (2004).
[CrossRef]

IEEE J. Quantum Electron.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534 nm in erbium-doped zirconia waveguides,” IEEE J. Quantum Electron.39(1), 154–159 (2003).
[CrossRef]

J. IEEE Photonics

C. Y. Wong, Z. Cheng, X. Chen, K. Xu, C. K. Y. Fung, Y. Chen, and H. K. Tsang, “Characterization of Mid-Infrared Silicon-on-sapphire Microring Resonatiors With Thermal Tuning,” J. IEEE Photonics4(4), 1095–1102 (2012).
[CrossRef]

J. Mater. Sci.

B. Prasai, B. Cai, M. K. Underwood, J. P. Lewis, and D. A. Drabold, “Properties of amorphous and crystalline titanium dioxide from first principles,” J. Mater. Sci.47(21), 7515–7521 (2012).
[CrossRef]

U. Troitzsch and D. J. Ellis, “The ZrO2-TiO2 phase diagram,” J. Mater. Sci.40(17), 4571–4577 (2005).
[CrossRef]

R. Singh, M. Kumar, and S. Chandra, “Growth and characterization of high resistivity c-axis oriented ZnO films on different substrates by RF magnetron sputtering for MEMS applications,” J. Mater. Sci.42(12), 4675–4683 (2007).
[CrossRef]

J. Non-Cryst. Solids

L. Y. Zhu, G. Yu, X. Q. Wang, and D. Xu, “Preparation, phase transformation and microstructure of ZrxTi1-xO2(x=0.1-0.9) fine fibers,” J. Non-Cryst. Solids355(1), 68–71 (2009).
[CrossRef]

J. Phys. E Sci. Instrum.

R. Swanepoel, “Determination of the thickness and optical constant of amorphous silicon,” J. Phys. E Sci. Instrum.16(12), 1214–1222 (1983).
[CrossRef]

J. Vac. Sci. Technol. B

J. J. Yoon, S. M. Lee, T. J. Kim, S. Y. Hwang, M. Diware, Y. D. Kim, S. M. Hwang, and J. Joo, “Optical study of sol-gel processed ZrO_2/Si films by spectroscopic ellipsometry,” J. Vac. Sci. Technol. B29(4), 04D108 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

D. C. Cronemeyer, “Infrared absorption of reduced rutile TiO2 single crystals,” Phys. Rev.113(5), 1222–1226 (1959).
[CrossRef]

D. C. Cronemeyer, “Electrical and optical properties of rutile single crystals,” Phys. Rev.87(5), 876–886 (1952).
[CrossRef]

Phys. Rev. B

X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B65(7), 075105 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter

R. H. French, S. J. Glass, F. S. Ohuchi, Y. N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2.,” Phys. Rev. B Condens. Matter49(8), 5133–5142 (1994).
[CrossRef] [PubMed]

Science

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Other

“Nonlinear Optical Materials,” in Encyclopedia of Materials: Science and Technology, Robert W. Boyd and George L. Fischer, eds. (Elsevier, 2001).

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,”16th European Conference on Integrated Optics (ECIO 2012), Spain, p. 156 (2012)

J. D. B. Bradley, C. C. Evans, F. Parsy, K. C. Phillips, R. Senaratne, E. Marti, and E. Mazur, “Low-loss TiO2 planar waveguides for nanophotonic applications,” in IEEE Photonics Society 2010 23rd Annual Meeting, (IEEE, 2011), pp. 313–314.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

XRD of ZTO thin films with different Ti concentrations. Amorphous ZTO thin film is achieved in Zr0.6Ti0.4O2. Also shown are the pseudocubic lattice constant and grain size as a function of Ti concentration

Fig. 2
Fig. 2

(a) UV-VIS-NIR transmission spectrum of ZTO films with various Ti concentrations. The inset shows the optical bandgaps of ZTO thin films. (b) Refractive index of ZTO thin films with 3 Ti concentrations in the visible to near infrared wavelength range, calculated following reference [28]

Fig. 3
Fig. 3

FTIR of silicon substrate and ZTO thin films on silicon with different Ti concentrations. * indicates the major phonon vibration modes of Zr-O in the infrared wavelength range

Fig. 4
Fig. 4

(a, b) Top-view optical micrographs of micro-disk resonators comprising a Ge23Sb7S70- Zr0.6Ti0.4O2 strip-loaded structure; the coupling gap region (the red box in Fig. a) between the micro-disk and the bus waveguide is shown in Fig. b; (c) cross-sectional SEM image of a mid-IR waveguide illustrating the strip-loading structure; (d) field intensity distribution of the quasi-TE polarized waveguide mode simulated using FDTD.

Fig. 5
Fig. 5

Transmission spectra of the Ge23Sb7S70- Zr0.6Ti0.4O2 mid-IR resonators: Fig. b shows the spectrum in the red box in Fig. a.

Metrics