Abstract

In this paper we present our recent work on mid-infrared photonic integrated circuits for spectroscopic sensing applications. We discuss the use of silicon-based photonic integrated circuits for this purpose and detail how a variety of optical functions in the mid-infrared besides passive waveguiding and filtering can be realized, either relying on nonlinear optics or on the integration of other materials such as GaSb-based compound semiconductors, GeSn epitaxy and PbS colloidal nanoparticles.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Vlasov, “Silicon integrated nanophotonics: road from scientific explorations to practical applications,” plenary talk CLEO, United States, 2012.
  2. K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
    [CrossRef]
  3. Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express21(11), 13342–13350 (2013).
    [CrossRef] [PubMed]
  4. J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).
  5. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
    [CrossRef] [PubMed]
  6. R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
    [CrossRef]
  7. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
    [CrossRef] [PubMed]
  8. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
    [CrossRef]
  9. P. T. Lin, V. Singh, L. Kimerling, and A. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
    [CrossRef]
  10. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
    [CrossRef]
  11. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  12. P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
    [CrossRef] [PubMed]
  13. Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett.37(14), 2883–2885 (2012).
    [CrossRef] [PubMed]
  14. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]
  15. N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
    [CrossRef]
  16. F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)
  17. E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
    [CrossRef] [PubMed]
  18. M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express21(10), 11659–11669 (2013).
    [CrossRef] [PubMed]
  19. A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, G. Roelkens,” Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” accepted for publication in IEEE Photonics Conference (2013).
  20. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
    [CrossRef]
  21. G. P. Agrawal, “Nonlinear Fiber Optics,” 195–211 (Springer Berlin Heidelberg, 2006).
  22. B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011).
    [CrossRef] [PubMed]
  23. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  24. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express21(5), 5931–5940 (2013).
    [CrossRef] [PubMed]
  25. X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics6(10), 667–671 (2012).
    [CrossRef]
  26. M. Lamont, R. Lau, A. Griffith, Y. Wen, Y. Okawachi, M. Lipson, and A. Gaeta, “Mid-infrared supercontinuum generation in silicon waveguides,” CLEO, CW3H.1, United States (2013).
  27. B. Kuyken, P. Verheyen, P. Tannouri, J. Van Campenhout, R. Baets, G. Roelkens, and W. M. J. Green, Mid-infrared generation by frequency down-conversion across 1.2 octaves in a normally-dispersive silicon wire,” CLEO, CTh1F.2, United States, 2013.
  28. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
    [CrossRef] [PubMed]
  29. D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31(4), 292–295 (1977).
    [CrossRef]
  30. S. Uvin, U. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” accepted for publication in IEEE Photonics Conference, United States, 2013.
  31. K. Wang, M. Foster, and A. Foster, “Wavelength-agile near-infrared chip-based optical parametric oscillator using a deposited silicon waveguide,” CLEO, CTh5D, United States, 2013.
  32. N. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and SiGe in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011).
    [CrossRef]
  33. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
    [CrossRef] [PubMed]
  34. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  35. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express20(10), 11316–11320 (2012).
    [CrossRef] [PubMed]
  36. G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express18(19), 19957–19965 (2010).
    [CrossRef] [PubMed]
  37. R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
    [CrossRef]
  38. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express19(7), 6400–6405 (2011).
    [CrossRef] [PubMed]
  39. A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20(25), 27297–27303 (2012).
    [CrossRef] [PubMed]
  40. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, ”III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser & Photonics Reviews (2010)
    [CrossRef]
  41. N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
    [CrossRef]
  42. A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
    [CrossRef] [PubMed]
  43. L. Cerutti, J. B. Rodriguez, and E. Tournie, “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55um at room temperature,” IEEE Photon. Technol. Lett.22(8), 553–555 (2010).
    [CrossRef]
  44. J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
    [CrossRef]
  45. C. Tsay, F. Toor, C. F. Gmachl, and C. B. Arnold, “Chalcogenide glass waveguides integrated with quantum cascade lasers for on-chip mid-IR photonic circuits,” Opt. Lett.35(20), 3324–3326 (2010).
    [CrossRef] [PubMed]
  46. J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
    [CrossRef]
  47. T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).
  48. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Communications (2013)
    [CrossRef]
  49. C. Hu, A. Gassenq, Y. Justo, Z. Hens, and G. Roelkens, Colloidal quantum dot photodetectors on silicon for short-wave infrared applications,” E-MRS 2013 Spring Meeting, France (2013).
  50. I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
    [CrossRef] [PubMed]
  51. A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
    [CrossRef] [PubMed]
  52. S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
    [CrossRef]
  53. N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, I. Giles, D. Giles, B. Palsdottir, J. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. Ellis, D. Richardson, and F. Garcia Gunning, “Wavelength division multiplexing at 2μm,” European Conference on Optical Communication, PDP Th3A3 (2012)

2013 (9)

Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express21(11), 13342–13350 (2013).
[CrossRef] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
[CrossRef]

P. T. Lin, V. Singh, L. Kimerling, and A. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
[CrossRef] [PubMed]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express21(10), 11659–11669 (2013).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express21(5), 5931–5940 (2013).
[CrossRef] [PubMed]

2012 (9)

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20(25), 27297–27303 (2012).
[CrossRef] [PubMed]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Y. C. Chang, V. Paeder, L. Hvozdara, J. M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett.37(14), 2883–2885 (2012).
[CrossRef] [PubMed]

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
[CrossRef]

2011 (10)

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express19(7), 6400–6405 (2011).
[CrossRef] [PubMed]

N. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and SiGe in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011).
[CrossRef]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
[CrossRef]

2010 (5)

2009 (4)

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
[CrossRef]

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

2008 (1)

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

2007 (1)

1977 (1)

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31(4), 292–295 (1977).
[CrossRef]

Agarwal, A.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, L. Kimerling, and A. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
[CrossRef] [PubMed]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

Ahn, D.

Allan, G.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Arnold, C. B.

Asher, W.

Baehr-Jones, T.

Baets, R.

Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express21(11), 13342–13350 (2013).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express21(5), 5931–5940 (2013).
[CrossRef] [PubMed]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011).
[CrossRef] [PubMed]

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)

Beals, M.

Beausoleil, R.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Becla, P.

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

Bessette, J. T.

Bienstman, P.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

Bogaerts, W.

Brajuskovic, V.

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
[CrossRef]

Bulu, I.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

Cai, Y.

Camacho-Aguilera, R. E.

Cao, Q.

Cassan, E.

Cerutti, L.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

L. Cerutti, J. B. Rodriguez, and E. Tournie, “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55um at room temperature,” IEEE Photon. Technol. Lett.22(8), 553–555 (2010).
[CrossRef]

J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
[CrossRef]

Chang, Y. C.

Chen, J.

Chen, X.

Cheng, B.

Cheng, H. H.

Cheng, Z.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
[CrossRef]

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
[CrossRef]

Claes, T.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

Clemmen, S.

Crozat, P.

D’Costa, V.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Damlencourt, J. F.

Danto, S.

De Koninck, Y.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

De Muynck, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

De Vos, K.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

Delerue, C.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Drehman, A.

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

Emplit, Ph.

Fathpour, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
[CrossRef]

Fédéli, J. M.

Gassenq, A.

Gencarelli, F.

Giziewicz, W.

Gmachl, C. F.

Grech, P.

J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
[CrossRef]

Green, W. M. J.

Guyot-Sionnest, P.

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
[CrossRef]

Hartmann, J. M.

Hattasan, N.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)

Hens, Z.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Herzig, H. P.

Hochberg, M.

Hon, N.

N. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and SiGe in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011).
[CrossRef]

Hong, C. Y.

Hu, J.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

Hu, W.

Hu, Y.

Hvozdara, L.

Ilic, R.

Jalali, B.

N. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and SiGe in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011).
[CrossRef]

Kärtner, F. X.

Keuleyan, S.

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
[CrossRef]

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
[CrossRef]

Kimerling, L.

P. T. Lin, V. Singh, L. Kimerling, and A. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

Kimerling, L. C.

Kouvetakis, J.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Kovalenko, M. V.

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

Kozacik, S.

Kuyken, B.

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express21(10), 11659–11669 (2013).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express21(5), 5931–5940 (2013).
[CrossRef] [PubMed]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011).
[CrossRef] [PubMed]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)

Lambert, K.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Laval, S.

Lecunff, Y.

Lee, J. S.

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

Leo, F.

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)

Lepage, G.

Lhuillier, E.

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
[CrossRef]

Li, L.

Li, Y.

Lin, H.

Lin, P. T.

Lin, Q.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Liu, J.

Liu, W.

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

Liu, X.

Loncar, M.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

Loo, R.

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
[CrossRef]

Malik, A.

Marris-Morini, D.

Martins, J. C.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Mashanovich, G. Z.

Massar, S.

Mathews, J.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Menendez, J.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Michel, J.

Miloševic, M. M.

Molera, J.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

Moreels, I.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Muneeb, M.

Murakowski, M.

Musgraves, J. D.

Nag, A.

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

Narcy, G.

Nedeljkovic, M.

Nollet, T.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Osgood, R. M.

Osmond, J.

Owens, N.

Paeder, V.

Patel, N.

Pathak, S.

Penkov, B.

Popelka, S.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

Prather, D.

Qu, S.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Richardson, K.

Rodriguez, J. B.

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

L. Cerutti, J. B. Rodriguez, and E. Tournie, “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55um at room temperature,” IEEE Photon. Technol. Lett.22(8), 553–555 (2010).
[CrossRef]

J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
[CrossRef]

Rodriguez, J.-B.

Roelkens, G.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express21(10), 11659–11669 (2013).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express21(5), 5931–5940 (2013).
[CrossRef] [PubMed]

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20(25), 27297–27303 (2012).
[CrossRef] [PubMed]

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, Ph. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “50 dB parametric on-chip gain in silicon photonic wires,” Opt. Lett.36(22), 4401–4403 (2011).
[CrossRef] [PubMed]

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)

Romagnoli, M.

Roucka, R.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Ryckeboer, E.

Schacht, E.

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

Selvaraja, S. K.

Shankar, R.

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

Shimura, Y.

Singh, V.

Smeets, D.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Soref, R.

N. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and SiGe in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Soref, R. A.

Spokoyny, B.

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

Spott, A.

Staebler, D. L.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31(4), 292–295 (1977).
[CrossRef]

Su, S.

Sun, G.

Talapin, D. V.

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

Teo, E. J.

Tolle, J.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Toor, F.

Tournie, E.

L. Cerutti, J. B. Rodriguez, and E. Tournie, “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55um at room temperature,” IEEE Photon. Technol. Lett.22(8), 553–555 (2010).
[CrossRef]

Tournié, E.

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
[CrossRef]

Tsang, H. K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
[CrossRef]

Tsay, C.

Van Campenhout, J.

Van Thourhout, D.

Vanhaecke, F.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Vantomme, A.

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Verheyen, P.

Vermeulen, D.

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

Vincent, B.

Vivien, L.

Wang, J.

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

Wang, Q.

Wang, W.

Willner, A.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Wong, C. Y.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
[CrossRef]

Wronski, C. R.

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31(4), 292–295 (1977).
[CrossRef]

Xie, J.

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Xiong, B.

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
[CrossRef]

Xue, C.

Xue, H.

Yan, Y.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Yue, Y.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Zens, T.

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

Zhang, G.

Zhang, L.

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Zou, Y.

Zuo, Y.

ACS Nano (1)

I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J. C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, “Size-dependent optical properties of colloidal PbS quantum Dots,” ACS Nano3(10), 3023–3030 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

J. B. Rodriguez, L. Cerutti, P. Grech, and E. Tournié, “Room-temperature operation of a 2.25μm electrically pumped laser fabricated on a silicon substrate,” Appl. Phys. Lett.94(6), 061124 (2009).
[CrossRef]

J. Wang, T. Zens, J. Hu, P. Becla, L. Kimerling, and A. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett.102(12), 121104 (2013).
[CrossRef]

P. T. Lin, V. Singh, L. Kimerling, and A. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

R. Shankar, I. Bulu, and M. Loncar, “Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared,” Appl. Phys. Lett.102(5), 051108 (2013).
[CrossRef]

D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Appl. Phys. Lett.31(4), 292–295 (1977).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

N. Hattasan, B. Kuyken, F. Leo, E. Ryckeboer, D. Vermeulen, and G. Roelkens, “High-efficiency SOI fiber-to-chip grating couplers and low-loss waveguides for the short-wave infrared,” IEEE Photon. Technol. Lett.24(17), 1536–1538 (2012).
[CrossRef]

N. Hattasan, A. Gassenq, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Heterogeneous integration of GaInAsSb p-i-n photodiodes on a silicon-on-insulator waveguide circuit,” IEEE Photon. Technol. Lett.23(23), 1760–1762 (2011).
[CrossRef]

L. Cerutti, J. B. Rodriguez, and E. Tournie, “GaSb-based laser, monolithically grown on silicon substrate, emitting at 1.55um at room temperature,” IEEE Photon. Technol. Lett.22(8), 553–555 (2010).
[CrossRef]

IEEE Photonics Journal (2)

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, and H. K. Tsang, “Mid-infrared suspended membrane waveguide and ring resonator on silicon-on-insulator,” IEEE Photonics Journal4(5), 1510–1519 (2012).
[CrossRef]

K. De Vos, J. Molera, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal1(4), 225–235 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

A. Nag, M. V. Kovalenko, J. S. Lee, W. Liu, B. Spokoyny, and D. V. Talapin, “Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as surface ligands,” J. Am. Chem. Soc.133(27), 10612–10620 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

N. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and SiGe in the midwave and longwave infrared,” J. Appl. Phys.110(1), 011301 (2011).
[CrossRef]

J. Cryst. Growth (1)

T. Zens, P. Becla, A. Agarwal, L. Kimerling, and A. Drehman, “Long wavelength infrared detection using amorphous InSb and InAsSb,” J. Cryst. Growth334, 84–89 (2011).

J. Vac. Sci. Technol. (1)

R. Roucka, J. Xie, J. Kouvetakis, J. Mathews, V. D’Costa, J. Menendez, J. Tolle, and S. Qu, “GeSn photoconductor structures at 1.55 um: from advanced materials to prototype devices,” J. Vac. Sci. Technol.26(6), 1952–1955 (2008).
[CrossRef]

Journal of Sel. Topics in Quantum Electronics (1)

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. Beausoleil, A. Agarwal, L. Kimerling, J. Michel, and A. Willner, “On-chip octave-spanning supercontinuum in nanostructured silicon waveguides using ultralow pulse energy,” Journal of Sel. Topics in Quantum Electronics18(6), 1799–1806 (2012).
[CrossRef]

Nat. Photonics (3)

X. Liu, B. Kuyken, G. Roelkens, R. Baets, R. M. Osgood, and W. M. J. Green, “Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation,” Nat. Photonics6(10), 667–671 (2012).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, “Mid-infrared HgTe colloidal quantum dot photodetectors,” Nat. Photonics5(8), 489–493 (2011).
[CrossRef]

Opt. Express (14)

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, G. Roelkens, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “A silicon-based widely tunable short-wave infrared optical parametric oscillator,” Opt. Express21(5), 5931–5940 (2013).
[CrossRef] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express19(7), 6400–6405 (2011).
[CrossRef] [PubMed]

A. Gassenq, F. Gencarelli, J. Van Campenhout, Y. Shimura, R. Loo, G. Narcy, B. Vincent, and G. Roelkens, “GeSn/Ge heterostructure short-wave infrared photodetectors on silicon,” Opt. Express20(25), 27297–27303 (2012).
[CrossRef] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, “An electrically pumped germanium laser,” Opt. Express20(10), 11316–11320 (2012).
[CrossRef] [PubMed]

G. Sun, R. A. Soref, and H. H. Cheng, “Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode,” Opt. Express18(19), 19957–19965 (2010).
[CrossRef] [PubMed]

E. Ryckeboer, A. Gassenq, M. Muneeb, N. Hattasan, S. Pathak, L. Cerutti, J.-B. Rodriguez, E. Tournié, W. Bogaerts, R. Baets, and G. Roelkens, “Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm,” Opt. Express21(5), 6101–6108 (2013).
[CrossRef] [PubMed]

M. Muneeb, X. Chen, P. Verheyen, G. Lepage, S. Pathak, E. Ryckeboer, A. Malik, B. Kuyken, M. Nedeljkovic, J. Van Campenhout, G. Z. Mashanovich, and G. Roelkens, “Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm,” Opt. Express21(10), 11659–11669 (2013).
[CrossRef] [PubMed]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
[CrossRef] [PubMed]

Y. Li and R. Baets, “Homodyne laser Doppler vibrometer on silicon-on-insulator with integrated 90 degree optical hybrids,” Opt. Express21(11), 13342–13350 (2013).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

Opt. Lett. (6)

Other (13)

N. MacSuibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, I. Giles, D. Giles, B. Palsdottir, J. Gruner-Nielsen, R. Phelan, J. O’Carroll, B. Kelly, D. Murphy, A. Ellis, D. Richardson, and F. Garcia Gunning, “Wavelength division multiplexing at 2μm,” European Conference on Optical Communication, PDP Th3A3 (2012)

Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, and Q. J. Wang, “Broadband high photoresponse from pure monolayer graphene photodetector,” Nat. Communications (2013)
[CrossRef]

C. Hu, A. Gassenq, Y. Justo, Z. Hens, and G. Roelkens, Colloidal quantum dot photodetectors on silicon for short-wave infrared applications,” E-MRS 2013 Spring Meeting, France (2013).

M. Lamont, R. Lau, A. Griffith, Y. Wen, Y. Okawachi, M. Lipson, and A. Gaeta, “Mid-infrared supercontinuum generation in silicon waveguides,” CLEO, CW3H.1, United States (2013).

B. Kuyken, P. Verheyen, P. Tannouri, J. Van Campenhout, R. Baets, G. Roelkens, and W. M. J. Green, Mid-infrared generation by frequency down-conversion across 1.2 octaves in a normally-dispersive silicon wire,” CLEO, CTh1F.2, United States, 2013.

S. Uvin, U. Dave, B. Kuyken, S. Selvaraja, F. Leo, and G. Roelkens, “Mid-infrared to telecom-band stable supercontinuum generation in hydrogenated amorphous silicon waveguides,” accepted for publication in IEEE Photonics Conference, United States, 2013.

K. Wang, M. Foster, and A. Foster, “Wavelength-agile near-infrared chip-based optical parametric oscillator using a deposited silicon waveguide,” CLEO, CTh5D, United States, 2013.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, J. Bowers, ”III-V/silicon photonics for on-chip and inter-chip optical interconnects,” Laser & Photonics Reviews (2010)
[CrossRef]

Y. Vlasov, “Silicon integrated nanophotonics: road from scientific explorations to practical applications,” plenary talk CLEO, United States, 2012.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-infrared Semiconductor Optoelectronics (Springer-Verlag, 2006).

F. Leo, B. Kuyken, N. Hattasan, R. Baets, and G. Roelkens, “Passive SOI devices for the short-wave infrared,” European Conference on Integrated Optics (ECIO 2012), 156–158, Spain (2012)

A. Malik, M. Muneeb, Y. Shimura, J. Van Campenhout, G. Roelkens,” Germanium-on-silicon mid-infrared waveguides and Mach-Zehnder interferometers,” accepted for publication in IEEE Photonics Conference (2013).

G. P. Agrawal, “Nonlinear Fiber Optics,” 195–211 (Springer Berlin Heidelberg, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Waveguide loss as a function of wavelength for a 900nm by 220nm air clad single mode silicon waveguide (fundamental TE mode); (b) fiber-to-chip grating coupler efficiency spectrum for TE polarized light; (c) transmission spectrum of an all-pass ring resonator in the 2.3μm wavelength range; (d) wavelength (de)multiplexing characteristic of an arrayed waveguide grating device.

Fig. 2
Fig. 2

(a) Silicon-on-insulator waveguide losses in the 3.8μm wavelength range for 400nm c-Si waveguide layers (WG1) and 220nm c-Si/160nm p-Si (WG2); (b) example of an arrayed waveguide grating wavelength demultiplexer operating at 3.8μm implemented on the 220nm c-Si/160nm p-Si platform.

Fig. 3
Fig. 3

(a) Ge-on-Si waveguide normalized losses at 5μm wavelength for a 2μm thick germanium device layer thickness (2.2 μm waveguide width, completely etched through the germanium waveguide core). (b) Mach-Zehnder interferometer implemented in Ge on Si for wavelength multiplexing purposes.

Fig. 4
Fig. 4

The phase mismatch as a function of detuning frequency from the pump. Depending on the sign of β2 and β4 the phase matching equations have several solutions (PMB = phase matching band).

Fig. 5
Fig. 5

(a) Greater than 50dB Raman assisted parametric amplification in wavelength bands close to the 2.175 μm pump wavelength; (b) supercontinuum generation in a silicon waveguide due to the complex interplay of modulation instability, self-phase modulation, Raman amplification, cascaded four wave mixing and dispersive wave generation; (c) tuning characteristic of a fiber loop based tunable optical parametric oscillator based on a silicon parametric gain chip; (d) spectral translation between the telecom and mid-infrared wavelength band.

Fig. 6
Fig. 6

Generation of a supercontinuum in an amorphous silicon waveguide using a Thulium fiber picosecond pulse source at 1950nm wavelength. No degradation of the a-Si can be observed.

Fig. 7
Fig. 7

(a) GeSn/Ge photoconductor integrated on a 200mm silicon wafer demonstrating the potential of GeSn heterostructures for the realization of mid-infrared opto-electronic devices on silicon photonic integrated circuits: responsivity as a function of wavelength and as a function of the number of GeSn quantum wells; (b) germanium-on-silicon waveguide losses in the short wave infrared (2.25 μm wide and 1 μm thick germanium waveguide).

Fig. 8
Fig. 8

(a) Microscope picture of the heterogeneously integrated photodiode array on top of a planar concave grating spectrometer; (b) representative spectral response (photocurrent versus wavelength) of the different channels of the spectrometer in different wavelength ranges covering 1500nm-2300nm; (c) DVS-BCB absorption spectrum in the mid-infrared wavelength range.

Fig. 9
Fig. 9

(a) Microscope image of a PbS nanoparticle photoconductor integrated on a silicon wafer. (b) Absorption spectrum of the PbS nanoparticle photoconductor showing the first exciton transition of 10 nm diameter PbS nanoparticles. (c) Photoconductor responsivity as a function of optical input power

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ k lin +2γP=0,
k(ω)=k( ω p )+ β 1 (ω ω p )+ 1 2 β 2 (ω ω p ) 2 +...,
β 2 Ω 2 + 1 12 β 4 Ω 4 +2γP=0.

Metrics