Abstract

CMOS compatible mid-Infrared (mid-IR) microphotonics including (1) broadband SOUP (Silicon on Oxide Undercladding Pedestal) waveguides; and (2) mid-IR transparent chalcogenide glass (ChGs) waveguides monolithically integrated with a PbTe thin film photodetector; are demonstrated. Using a pedestal undercladding geometry we obtain an optical loss for our Si waveguide which is 10 dB/cm lower compared to other waveguides using planar SiO2 cladding at λ = 5 µm, and a fundamental mode is seen over a broad mid-IR spectral range. To realize a fully integrated mid-IR on-chip system, in parallel, we develop PbTe thin film detectors that can be deposited on various mid-IR platforms through a thermal evaporation technique, offering high photoresponsivity of 25 V/W from λ = 1 µm to 4 µm. The detector can be efficiently integrated, using a suitable spacer, to an underlying Chalcogenide glass (ChGs) waveguide. Our results of low loss waveguides and integrated thin film detectors enable Si-CMOS microphotonics for mid-IR applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
    [CrossRef] [PubMed]
  2. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
    [CrossRef] [PubMed]
  3. J. Ozhikandathil and M. Packirisamy, “Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection,” J. Biomed. Opt.17(1), 017006 (2012).
    [CrossRef] [PubMed]
  4. A. Chandrasekaran and M. Packirisamy, “Integrated Microfluidic Biophotonic Chip for Laser Induced Fluorescence Detection,” Biomed. Microdevices12(5), 923–933 (2010).
    [CrossRef] [PubMed]
  5. K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
    [CrossRef] [PubMed]
  6. M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
    [CrossRef]
  7. R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011).
    [CrossRef] [PubMed]
  8. P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. doi: (2013).
    [CrossRef]
  9. X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
    [CrossRef]
  10. P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
    [CrossRef]
  11. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  12. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
    [CrossRef]
  13. H. Gunzler and H. U. Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2002).
  14. R. M. Silverstein, F. X. Webster, and D. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, 2005).
  15. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
    [CrossRef]
  16. Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express19(17), 15803–15809 (2011).
    [CrossRef] [PubMed]
  17. P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
    [CrossRef]
  18. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  19. P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
    [CrossRef]
  20. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
    [CrossRef] [PubMed]
  21. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
    [CrossRef] [PubMed]
  22. P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
    [CrossRef] [PubMed]
  23. P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
    [CrossRef] [PubMed]
  24. A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
    [CrossRef]
  25. Lead Selenide Detectors, Available: http://www.judsontechnologies.com/lead_sel.html
  26. D. E. Bode, Lead Salt Detectors vol. 3 (Academic Press, 1966).
  27. J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
    [CrossRef]
  28. J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
    [CrossRef]
  29. M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
    [CrossRef]
  30. J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
    [CrossRef]
  31. J. Wang thesis, “Resonant-cavity-enhanced Multispectral Infrared Photodetectors for Monolithic Integration on Silicon,” Ph.D., Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (2010).
  32. R. L. Petritz, “Theory of Photoconductivity in Semiconductor Films,” Phys. Rev.104(6), 1508–1516 (1956).
    [CrossRef]
  33. J. C. Slater, “Barrier Theory of the Photoconductivity of Lead Sulfide,” Phys. Rev.103(6), 1631–1644 (1956).
    [CrossRef]
  34. A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
    [CrossRef] [PubMed]
  35. D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
    [CrossRef] [PubMed]
  36. NIST Chemistry WebBook, http://webbook.nist.gov/chemistry
  37. C. Y. Liang and S. Krimm, “Infrared Spectra of High Polymers–Part IX: Polyethylene Terephthalate,” J. Mol. Spectrosc.3(1-6), 554–574 (1959).
    [CrossRef]
  38. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
    [CrossRef] [PubMed]

2013 (4)

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
[CrossRef] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

2012 (5)

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

J. Ozhikandathil and M. Packirisamy, “Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection,” J. Biomed. Opt.17(1), 017006 (2012).
[CrossRef] [PubMed]

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

2011 (7)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

R. K. W. Lau, M. Ménard, Y. Okawachi, M. A. Foster, A. C. Turner-Foster, R. Salem, M. Lipson, and A. L. Gaeta, “Continuous-wave mid-infrared frequency conversion in silicon nanowaveguides,” Opt. Lett.36(7), 1263–1265 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express19(17), 15803–15809 (2011).
[CrossRef] [PubMed]

2010 (4)

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
[CrossRef] [PubMed]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

A. Chandrasekaran and M. Packirisamy, “Integrated Microfluidic Biophotonic Chip for Laser Induced Fluorescence Detection,” Biomed. Microdevices12(5), 923–933 (2010).
[CrossRef] [PubMed]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

2009 (1)

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

2008 (1)

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

2007 (2)

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

2006 (3)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

2003 (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
[CrossRef]

1959 (1)

C. Y. Liang and S. Krimm, “Infrared Spectra of High Polymers–Part IX: Polyethylene Terephthalate,” J. Mol. Spectrosc.3(1-6), 554–574 (1959).
[CrossRef]

1956 (2)

R. L. Petritz, “Theory of Photoconductivity in Semiconductor Films,” Phys. Rev.104(6), 1508–1516 (1956).
[CrossRef]

J. C. Slater, “Barrier Theory of the Photoconductivity of Lead Sulfide,” Phys. Rev.103(6), 1631–1644 (1956).
[CrossRef]

Agarwal, A.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Agarwal, A. M.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

Ahn, D.

Asher, W.

Atanackovic, P.

Baehr-Jones, T.

Beals, M.

Becla, P.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

Ben Masaud, T. M.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Bettiol, A. A.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Blackwood, D. J.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Böberl, M.

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Breese, M. B. H.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Cai, Y.

Cerutti, L.

Chandrasekaran, A.

A. Chandrasekaran and M. Packirisamy, “Integrated Microfluidic Biophotonic Chip for Laser Induced Fluorescence Detection,” Biomed. Microdevices12(5), 923–933 (2010).
[CrossRef] [PubMed]

Chen, J.

Chong, H. M. H.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Crnjanski, J.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

Danto, S.

Duvall, S. G.

Eggleton, B. J.

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Emerson, N. G.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Fan, X.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

Foster, M. A.

Fromherz, T.

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Gaeta, A. L.

Gassenq, A.

Giusca, C.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

Giziewicz, W.

Gomez-Morilla, I.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Green, W. M. J.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Grillet, C.

Guo, Y.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

Hao, Y.

Hattasan, N.

Headley, W.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

Headley, W. R.

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Heiss, W.

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Hensley, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

Hochberg, M.

Hong, C. Y.

Hu, J.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Hu, Y.

Hudson, D.

Ilic, R.

Jaberansary, E.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

Jackson, S. D.

Jiang, X.

Kärtner, F. X.

Kimerling, L.

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Kimerling, L. C.

Kozacik, S.

Krimm, S.

C. Y. Liang and S. Krimm, “Infrared Spectra of High Polymers–Part IX: Polyethylene Terephthalate,” J. Mol. Spectrosc.3(1-6), 554–574 (1959).
[CrossRef]

Lau, R. K. W.

Lee, W.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

Li, F.

Li, G.

Li, L.

Li, Y.

Liang, C. Y.

C. Y. Liang and S. Krimm, “Infrared Spectra of High Polymers–Part IX: Polyethylene Terephthalate,” J. Mol. Spectrosc.3(1-6), 554–574 (1959).
[CrossRef]

Lim, D.

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Lin, H.

Lin, P. T.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

Lipson, M.

Liu, J.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Liu, X.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Luzinov, I.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

Madden, S. J.

Magi, E.

Mashanovich, G. Z.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Ménard, M.

Michel, J.

Miloševic, M. M.

Moghe, Y.

Moss, D. J.

Murakowski, M.

Musgraves, J. D.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

Nedeljkovic, M.

O’Brien, C.

Okawachi, Y.

Oo, M. K.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

Osgood, R. M.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Owens, N.

Ozhikandathil, J.

J. Ozhikandathil and M. Packirisamy, “Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection,” J. Biomed. Opt.17(1), 017006 (2012).
[CrossRef] [PubMed]

Packirisamy, M.

J. Ozhikandathil and M. Packirisamy, “Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection,” J. Biomed. Opt.17(1), 017006 (2012).
[CrossRef] [PubMed]

A. Chandrasekaran and M. Packirisamy, “Integrated Microfluidic Biophotonic Chip for Laser Induced Fluorescence Detection,” Biomed. Microdevices12(5), 923–933 (2010).
[CrossRef] [PubMed]

Penkov, B.

Petritz, R. L.

R. L. Petritz, “Theory of Photoconductivity in Semiconductor Films,” Phys. Rev.104(6), 1508–1516 (1956).
[CrossRef]

Pillwein, G.

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Prather, D.

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Read, A.

Reddy, K.

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

Reed, G. T.

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Richardson, K.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

Rodriguez, J. B.

Roelkens, G.

Rogalski, A.

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
[CrossRef]

Roither, J.

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Salem, R.

Singh, V.

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett.38(9), 1470–1472 (2013).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, “Air-clad silicon pedestal structures for broadband mid-infrared microphotonics,” Opt. Lett.38(7), 1031–1033 (2013).
[CrossRef] [PubMed]

Slater, J. C.

J. C. Slater, “Barrier Theory of the Photoconductivity of Lead Sulfide,” Phys. Rev.103(6), 1631–1644 (1956).
[CrossRef]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Spott, A.

Springholz, G.

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Stankovic, S.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

Sun, X.

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Synowicki, R.

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Teo, E. J.

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Thomson, D.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

Tournié, E.

Turner-Foster, A. C.

Vlasov, Y. A.

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

Wang, J.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

Wang, M.

Wei, Y.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

Xiong, B.

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Yang, J.

Yang, P. Y.

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

Zens, T.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

Zou, Y.

Appl. Phys. Lett. (5)

M. M. Milošević, M. Nedeljkovic, T. M. Ben Masaud, E. Jaberansary, H. M. H. Chong, N. G. Emerson, G. T. Reed, and G. Z. Mashanovich, “Silicon waveguides and devices for the mid-infrared,” Appl. Phys. Lett.101(12), 121105 (2012).
[CrossRef]

P. T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, “Planar silicon nitride mid-infrared devices,” Appl. Phys. Lett.102(25), 251121 (2013).
[CrossRef]

P. Y. Yang, G. Z. Mashanovich, I. Gomez-Morilla, W. R. Headley, G. T. Reed, E. J. Teo, D. J. Blackwood, M. B. H. Breese, and A. A. Bettiol, “Freestanding waveguides in silicon,” Appl. Phys. Lett.90(24), 241109 (2007).
[CrossRef]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett.100(21), 211106 (2012).
[CrossRef]

M. Böberl, T. Fromherz, J. Roither, G. Pillwein, G. Springholz, and W. Heiss, “Room temperature operation of epitaxial lead-telluride detectors monolithically integrated on midinfrared filters,” Appl. Phys. Lett.88(4), 041105 (2006).
[CrossRef]

Biomed. Microdevices (1)

A. Chandrasekaran and M. Packirisamy, “Integrated Microfluidic Biophotonic Chip for Laser Induced Fluorescence Detection,” Biomed. Microdevices12(5), 923–933 (2010).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

J. Wang, J. Hu, P. Becla, A. M. Agarwal, and L. Kimerling, “Room-temperature oxygen sensitization in highly textured, nanocrystalline PbTe films: A mechanistic study,” J. Appl. Phys.110(8), 083719 (2011).
[CrossRef]

J. Wang, J. Hu, X. Sun, A. Agarwal, D. Lim, R. Synowicki, and L. Kimerling, “Structural, electrical and optical properties of thermally evaporated nanocrystalline PbTe films,” J. Appl. Phys.104(5), 053707 (2008).
[CrossRef]

J. Biomed. Opt. (1)

J. Ozhikandathil and M. Packirisamy, “Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection,” J. Biomed. Opt.17(1), 017006 (2012).
[CrossRef] [PubMed]

J. Mater. Sci. Mater. Electron. (1)

P. Y. Yang, S. Stankovic, J. Crnjanski, E. J. Teo, D. Thomson, A. A. Bettiol, M. B. H. Breese, W. Headley, C. Giusca, G. T. Reed, and G. Z. Mashanovich, “Silicon photonic waveguides for mid- and long-wave infrared region,” J. Mater. Sci. Mater. Electron.20(S1), 159–163 (2009).
[CrossRef]

J. Mol. Spectrosc. (1)

C. Y. Liang and S. Krimm, “Infrared Spectra of High Polymers–Part IX: Polyethylene Terephthalate,” J. Mol. Spectrosc.3(1-6), 554–574 (1959).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A, Pure Appl. Opt.8(10), 840–848 (2006).
[CrossRef]

Lab Chip (2)

K. Reddy, Y. Guo, J. Liu, W. Lee, M. K. Oo, and X. Fan, “Rapid, sensitive, and multiplexed on-chip optical sensors for micro-gas chromatography,” Lab Chip12(5), 901–905 (2012).
[CrossRef] [PubMed]

P. T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves, I. Luzinov, J. Hensley, L. C. Kimerling, and A. Agarwal, “Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides,” Lab Chip13(11), 2161–2166 (2013).
[CrossRef] [PubMed]

Nat. Photonics (3)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics5(10), 591–597 (2011).
[CrossRef] [PubMed]

X. Liu, R. M. Osgood, Y. A. Vlasov, and W. M. J. Green, “Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides,” Nat. Photonics4(8), 557–560 (2010).
[CrossRef]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics4(8), 495–497 (2010).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006).
[CrossRef] [PubMed]

Opt. Express (7)

D. Ahn, C. Y. Hong, J. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” Opt. Express18(12), 12127–12135 (2010).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express19(16), 15212–15220 (2011).
[CrossRef] [PubMed]

Y. Wei, G. Li, Y. Hao, Y. Li, J. Yang, M. Wang, and X. Jiang, “Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides,” Opt. Express19(17), 15803–15809 (2011).
[CrossRef] [PubMed]

A. Gassenq, N. Hattasan, L. Cerutti, J. B. Rodriguez, E. Tournié, and G. Roelkens, “Study of evanescently-coupled and grating-assisted GaInAsSb photodiodes integrated on a silicon photonic chip,” Opt. Express20(11), 11665–11672 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. (2)

R. L. Petritz, “Theory of Photoconductivity in Semiconductor Films,” Phys. Rev.104(6), 1508–1516 (1956).
[CrossRef]

J. C. Slater, “Barrier Theory of the Photoconductivity of Lead Sulfide,” Phys. Rev.103(6), 1631–1644 (1956).
[CrossRef]

Prog. Quantum Electron. (1)

A. Rogalski, “Infrared detectors: status and trends,” Prog. Quantum Electron.27(2-3), 59–210 (2003).
[CrossRef]

Other (7)

Lead Selenide Detectors, Available: http://www.judsontechnologies.com/lead_sel.html

D. E. Bode, Lead Salt Detectors vol. 3 (Academic Press, 1966).

H. Gunzler and H. U. Gremlich, IR Spectroscopy: An Introduction (Wiley-VCH, 2002).

R. M. Silverstein, F. X. Webster, and D. Kiemle, Spectrometric Identification of Organic Compounds (Wiley, 2005).

P. T. Lin, V. Singh, H.-Y. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, “Low-stress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics,” Adv. Opt. Mater. doi: (2013).
[CrossRef]

J. Wang thesis, “Resonant-cavity-enhanced Multispectral Infrared Photodetectors for Monolithic Integration on Silicon,” Ph.D., Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (2010).

NIST Chemistry WebBook, http://webbook.nist.gov/chemistry

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) The structure of the proposed SOUP (Silicon on Oxide Undercladding Pedestal) mid-IR waveguide device consists of a crystalline Si core and a pedestal oxide undercladding. The structure parameters include waveguide width w, waveguide height h, pedestal height s, notch width d and undercut radius r. (b) The refractive index profile of the proposed waveguide. (c) The calculated mode profile shows a clear fundamental mode within the upper Si waveguide core at wavelength λ of 5 µm.

Fig. 2
Fig. 2

(a) the optical loss shows a significant drop as r increases and can be attributed to the implementation of a pedestal structure where the undercladding mid-IR opaque oxide is replaced by air that has no mid-IR loss. and (b) the effective refractive index shows almost no change as a function of undercut radius r at λ = 5 µm. The waveguide structure has w = 2 µm and h = 2 µm. Mid-IR light is well guided by the Si core after most of the oxide cladding is replaced by air.

Fig. 3
Fig. 3

(a) The calculated mode profiles at λ = 2 µm, 4 µm and λ = 6 µm where the structure parameters are w = 2 µm, h = 2 µm, r = 0.8 µm and d = 0.4 µm. As wavelength increases, the evanescent wave extends beneath the waveguide into the undercladding, and belies the importance of choice of undercladding material for low-loss performance. (b) The optical loss improvement increases with increasing wavelength. Here the improvement is defined by the decrease of waveguide loss before and after oxide undercut and (c) The effective refractive index neff decreases as a function of wavelength, because the evanescent mode expands to the undercladding.

Fig. 4
Fig. 4

(a) Fabrication process of the SOUP waveguide. At Step (i) patterns of waveguide are generated on a SOI wafer via conventional photolithography. At Step (ii) the patterns are transferred into top Si layer with ICP-RIE. At Step (iii) the photoresist used for pattern generation is removed by acetone and plasma cleaning. At Step (iv) under-cut of oxide cladding is performed by BOE. (b) SEM image of fabricated SOUP waveguide showing measured structure parameters as w = 3 µm, h = 2 µm r = 1.8 µm and d = 0.5 µm. The waveguide integrity is maintained and its surface, edge and facet is seen to be smooth and crack-free.

Fig. 5
Fig. 5

(a) The experimental setup for mid-IR waveguide characterization. The light source from a tunable laser (λ = 2.4 μm to λ = 3.7 μm) is butt-coupled into the SOUP waveguide through a fluoride fiber. (b) The waveguide fundamental mode is captured by the mid-IR camera at λ = 3.7 µm. (c) The mode intensity profile along the x axis.

Fig. 6
Fig. 6

Responsivity of polycrystalline PbTe films of different thicknesses under a bias current of 0.1 mA and cooled to −60°C (by a TEC). The 100 nm film exhibits the highest responsivity in the 3-4 µm wavelength range [31].

Fig. 7
Fig. 7

Schematic cross-sectional image of the designed resonant cavity structure. The cavity region consists of a thin, absorbing PbTe layer sandwiched between two As2S3 layers [28, 31].

Fig. 8
Fig. 8

Schematic of a mid-IR lab-on-a-chip sensor system that combines a light source, sensing elements, a detector, and read-out circuitry on a monolithic silicon platform. The functionalization layer adds specificity to the sensor response for greater accuracy in analyte recognition.

Fig. 9
Fig. 9

(a) Integrated detector structure with a single mode (λ = 3.2 µm) As2Se3 waveguide, GeSbS glass undercladding to prevent leakage of mode into Si substrate, low index spacer to minimize modal mismatch and Fresnel reflection, and the photoconductive PbTe layer with metal contacts. (b) Cross sectional view of the device.

Fig. 10
Fig. 10

(a) Cross section of field profile of the evanescent detector without spacer layer shows that the mode is absorbed as it propagates through the first few microns of the material. (b) Cross-sectional view of detector with spacer layer shows a smoother transition to the detector over 50 to 100 µm of detector width allowing for lower current densities. (Inset) Profile of the waveguide-detector mode showing the field in both the waveguide and the PbTe detector layer.

Fig. 11
Fig. 11

(a) The relation between QE and the detector width at various detector thicknesses shows higher QE with increasing detector width as more light couples into the system. (b) The relation between the QE and the detector thickness at various detector widths shows that increasing the detector thickness increases the QE as more of the propagating mode is contained in the detector layer. However, increasing the thickness beyond 90-100 nm increases the effective index to an extent that reduces QE.

Fig. 12
Fig. 12

Process flow for the fabrication of a ChG waveguide-integrated PbTe detector.

Fig. 13
Fig. 13

(a) PbTe detector fabricated on an SiO2 spacer coated As2Se3 waveguide. (b) Final structure after fabrication of metal contacts shows good alignment and crack-free layers.

Metrics