Abstract

The slow light propagation in Ge20Sb15Se65 chalcogenide photonic crystal slab waveguides of air holes have been investigated. The obtained slow-light waveguides can be divided into two categories by perturbing the holes adjacent to the waveguide core: symmetric and asymmetric waveguides. With a bandwidth of 3~30 nm at the center wavelength of 3 μm, it is possible to achieve the group index of 16~43 within 20% in symmetric waveguides, and the group index can be increased up to 130 in asymmetric ones. The result shows perfect slow-light properties in chalcogenide PCSWs and can be used as affordable reference for further research.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005).
    [CrossRef] [PubMed]
  2. J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
    [CrossRef]
  3. Y. Chen, X. Shen, R. Wang, G. Wang, S. Dai, T. Xu, and Q. Nie, “Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation,” J. Alloys Comp. (2012).
  4. A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
    [CrossRef]
  5. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
    [CrossRef]
  6. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
    [CrossRef]
  7. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  8. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express15(13), 8323–8328 (2007).
    [CrossRef] [PubMed]
  9. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  10. B. Meng, L. L. Wang, W. Q. Huang, X. F. Li, X. Zhai, and H. Zhang, “Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes,” Appl. Opt.51(23), 5735–5742 (2012).
    [CrossRef] [PubMed]
  11. S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express19(22), 21832–21841 (2011).
    [CrossRef] [PubMed]
  12. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  13. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
    [CrossRef] [PubMed]
  14. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17(25), 22393–22400 (2009).
    [CrossRef] [PubMed]
  15. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010).
    [CrossRef] [PubMed]
  16. F. Wang, J. S. Jensen, J. Mørk, and O. Sigmund, “Systematic design of loss-engineered slow-light waveguides,” J. Opt. Soc. Am. A29(12), 2657–2666 (2012).
    [CrossRef] [PubMed]
  17. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
    [CrossRef]
  18. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  19. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
    [CrossRef]
  20. J. Tan, R. A. Soref, and W. Jiang, “Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning,” Opt. Express21(6), 6756–6763 (2013).
    [CrossRef] [PubMed]

2013

2012

2011

2010

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

2003

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

2000

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

1995

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

Ahopelto, J.

Baba, T.

Barthélémy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Borel, P. I.

Bulla, D.

Chen, R. T.

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Eggleton, B. J.

Elliott, S.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Fage-Pedersen, J.

Frandsen, L. H.

Freeman, D.

Fuflyigin, V. N.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Gomez-Iglesias, A.

Gopinath, J. T.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Grillet, C.

Hamachi, Y.

Hosseini, A.

Huang, W. Q.

Integlia, R. A.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Ippen, E. P.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Jensen, J. S.

Jiang, W.

J. Tan, R. A. Soref, and W. Jiang, “Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning,” Opt. Express21(6), 6756–6763 (2013).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

King, W. A.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Krauss, T. F.

Kubo, S.

Lavrinenko, A. V.

Li, J.

Li, X. F.

Lipsanen, H.

Luther-Davies, B.

Madden, S.

Meng, B.

Monat, C.

Mørk, J.

Mulot, M.

O’Faolain, L.

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Rahimi, S.

Säynätjoki, A.

Seddon, A.

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

Shurgalin, M.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Sigmund, O.

Smektala, F.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Soljacic, M.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Song, W.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Soref, R. A.

Spurny, M.

Subbaraman, H.

Suzuki, K.

Tan, J.

Wang, F.

Wang, L. L.

White, T. P.

Xu, X.

Zakery, A.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Zhai, X.

Zhang, H.

Appl. Opt.

J. Appl. Phys.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

J. Non-Cryst. Solids

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

Nat. Photonics

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Opt. Express

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express15(13), 8323–8328 (2007).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

J. Tan, R. A. Soref, and W. Jiang, “Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning,” Opt. Express21(6), 6756–6763 (2013).
[CrossRef] [PubMed]

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express19(22), 21832–21841 (2011).
[CrossRef] [PubMed]

K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17(25), 22393–22400 (2009).
[CrossRef] [PubMed]

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Other

Y. Chen, X. Shen, R. Wang, G. Wang, S. Dai, T. Xu, and Q. Nie, “Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation,” J. Alloys Comp. (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed photonic crystal slab waveguide with index of 2.612 fully embedded in air claddings and (b) calculated dispersion curve of the PCSW with r = 0.3a,h = 0.5a, ru = 0.4a and rd = 0.2a.

Fig. 2
Fig. 2

(a) Dispersion relation and (b) group index of different modes in PCSW with r = 0.3a and h = 0.5a.

Fig. 3
Fig. 3

(a) Curves of the guided modes for different rs and (b) curves of the group indices for different rs

Fig. 4
Fig. 4

the curves of the group index for different ru and rd.

Tables (2)

Tables Icon

Table 1 Refractive indices of Ge20Sb15Se65 glass at different wavelength

Tables Icon

Table 2 Slow light properties of symmetric and asymmetric PCSWs at λ = 3 μm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

v g = c n g = dω dk
NDBP= n ¯ g × Δω ω 0
Δ a a = Δ λ λ

Metrics