Abstract

The slow light propagation in Ge20Sb15Se65 chalcogenide photonic crystal slab waveguides of air holes have been investigated. The obtained slow-light waveguides can be divided into two categories by perturbing the holes adjacent to the waveguide core: symmetric and asymmetric waveguides. With a bandwidth of 3~30 nm at the center wavelength of 3 μm, it is possible to achieve the group index of 16~43 within 20% in symmetric waveguides, and the group index can be increased up to 130 in asymmetric ones. The result shows perfect slow-light properties in chalcogenide PCSWs and can be used as affordable reference for further research.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005).
    [CrossRef] [PubMed]
  2. J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
    [CrossRef]
  3. Y. Chen, X. Shen, R. Wang, G. Wang, S. Dai, T. Xu, and Q. Nie, “Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation,” J. Alloys Comp. (2012).
  4. A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
    [CrossRef]
  5. F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
    [CrossRef]
  6. A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
    [CrossRef]
  7. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006).
    [CrossRef] [PubMed]
  8. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express15(13), 8323–8328 (2007).
    [CrossRef] [PubMed]
  9. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008).
    [CrossRef] [PubMed]
  10. B. Meng, L. L. Wang, W. Q. Huang, X. F. Li, X. Zhai, and H. Zhang, “Wideband and low dispersion slow-light waveguide based on a photonic crystal with crescent-shaped air holes,” Appl. Opt.51(23), 5735–5742 (2012).
    [CrossRef] [PubMed]
  11. S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express19(22), 21832–21841 (2011).
    [CrossRef] [PubMed]
  12. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett.34(7), 1072–1074 (2009).
    [CrossRef] [PubMed]
  13. C. Monat, M. Spurny, C. Grillet, L. O’Faolain, T. F. Krauss, B. J. Eggleton, D. Bulla, S. Madden, and B. Luther-Davies, “Third-harmonic generation in slow-light chalcogenide glass photonic crystal waveguides,” Opt. Lett.36(15), 2818–2820 (2011).
    [CrossRef] [PubMed]
  14. K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17(25), 22393–22400 (2009).
    [CrossRef] [PubMed]
  15. K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010).
    [CrossRef] [PubMed]
  16. F. Wang, J. S. Jensen, J. Mørk, and O. Sigmund, “Systematic design of loss-engineered slow-light waveguides,” J. Opt. Soc. Am. A29(12), 2657–2666 (2012).
    [CrossRef] [PubMed]
  17. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
    [CrossRef]
  18. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
    [CrossRef]
  19. W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
    [CrossRef]
  20. J. Tan, R. A. Soref, and W. Jiang, “Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning,” Opt. Express21(6), 6756–6763 (2013).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

2011 (2)

2010 (2)

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

2009 (2)

2008 (2)

2007 (2)

2006 (1)

2005 (1)

2004 (1)

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

2003 (1)

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

2000 (1)

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

1995 (1)

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

Ahopelto, J.

Baba, T.

Barthélémy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Borel, P. I.

Bulla, D.

Chen, R. T.

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Eggleton, B. J.

Elliott, S.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Fage-Pedersen, J.

Frandsen, L. H.

Freeman, D.

Fuflyigin, V. N.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Gomez-Iglesias, A.

Gopinath, J. T.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Grillet, C.

Hamachi, Y.

Hosseini, A.

Huang, W. Q.

Integlia, R. A.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Ippen, E. P.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Jensen, J. S.

Jiang, W.

J. Tan, R. A. Soref, and W. Jiang, “Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning,” Opt. Express21(6), 6756–6763 (2013).
[CrossRef] [PubMed]

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

King, W. A.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Krauss, T. F.

Kubo, S.

Lavrinenko, A. V.

Li, J.

Li, X. F.

Lipsanen, H.

Luther-Davies, B.

Madden, S.

Meng, B.

Monat, C.

Mørk, J.

Mulot, M.

O’Faolain, L.

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Rahimi, S.

Säynätjoki, A.

Seddon, A.

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

Shurgalin, M.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Sigmund, O.

Smektala, F.

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

Soljacic, M.

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

Song, W.

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Soref, R. A.

Spurny, M.

Subbaraman, H.

Suzuki, K.

Tan, J.

Wang, F.

Wang, L. L.

White, T. P.

Xu, X.

Zakery, A.

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

Zhai, X.

Zhang, H.

Appl. Opt. (1)

J. Appl. Phys. (1)

J. T. Gopinath, M. Soljačić, E. P. Ippen, V. N. Fuflyigin, W. A. King, and M. Shurgalin, “Third order nonlinearities in Ge-As-Se-based glasses for telecommunications applications,” J. Appl. Phys.96(11), 6931 (2004).
[CrossRef]

J. Non-Cryst. Solids (3)

A. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

F. Smektala, C. Quemard, V. Couderc, and A. Barthélémy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000).
[CrossRef]

A. Zakery and S. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids330(1-3), 1–12 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D Appl. Phys.40(9), 2666–2670 (2007).
[CrossRef]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics2(8), 465–473 (2008).
[CrossRef]

Opt. Express (8)

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express13(8), 3079–3086 (2005).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express14(20), 9444–9450 (2006).
[CrossRef] [PubMed]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express15(13), 8323–8328 (2007).
[CrossRef] [PubMed]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16(9), 6227–6232 (2008).
[CrossRef] [PubMed]

J. Tan, R. A. Soref, and W. Jiang, “Interband scattering in a slow light photonic crystal waveguide under electro-optic tuning,” Opt. Express21(6), 6756–6763 (2013).
[CrossRef] [PubMed]

S. Rahimi, A. Hosseini, X. Xu, H. Subbaraman, and R. T. Chen, “Group-index independent coupling to band engineered SOI photonic crystal waveguide with large slow-down factor,” Opt. Express19(22), 21832–21841 (2011).
[CrossRef] [PubMed]

K. Suzuki, Y. Hamachi, and T. Baba, “Fabrication and characterization of chalcogenide glass photonic crystal waveguides,” Opt. Express17(25), 22393–22400 (2009).
[CrossRef] [PubMed]

K. Suzuki and T. Baba, “Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides,” Opt. Express18(25), 26675–26685 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

W. Song, R. A. Integlia, and W. Jiang, “Slow light loss due to roughness in photonic crystal waveguides: An analytic approach,” Phys. Rev. B82(23), 235306 (2010).
[CrossRef]

Other (1)

Y. Chen, X. Shen, R. Wang, G. Wang, S. Dai, T. Xu, and Q. Nie, “Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation,” J. Alloys Comp. (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed photonic crystal slab waveguide with index of 2.612 fully embedded in air claddings and (b) calculated dispersion curve of the PCSW with r = 0.3a,h = 0.5a, ru = 0.4a and rd = 0.2a.

Fig. 2
Fig. 2

(a) Dispersion relation and (b) group index of different modes in PCSW with r = 0.3a and h = 0.5a.

Fig. 3
Fig. 3

(a) Curves of the guided modes for different rs and (b) curves of the group indices for different rs

Fig. 4
Fig. 4

the curves of the group index for different ru and rd.

Tables (2)

Tables Icon

Table 1 Refractive indices of Ge20Sb15Se65 glass at different wavelength

Tables Icon

Table 2 Slow light properties of symmetric and asymmetric PCSWs at λ = 3 μm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

v g = c n g = dω dk
NDBP= n ¯ g × Δω ω 0
Δ a a = Δ λ λ
α= α 1 n g + α 2 n g 2

Metrics