Abstract

The fabrication of complex, three-dimensional microscale shapes that can be replicated over large surfaces is an ongoing challenge, albeit one with a wide range of possible applications such as engineered surfaces with tuned wetting properties, scaffolds for cell studies, or surfaces with tailored optical properties. In this work, we use a two-step femtosecond laser direct-write technique and wet-etching process to fabricate monolithic glass micromolds with complex three-dimensional surface topologies, and demonstrate the replication of these structures in a soft polymer (polydimethylsiloxane, PDMS). To estimate the forces experienced during the demolding for one representative structure, we use a combination of two models – a simple linear elastic model and a numerical hyperelastic model. These models are used to support the high experimental success rates of the demolding process observed, despite the high strain induced in the material during demolding. Since the process used is scalable, this work opens new avenues for low-cost fabrication of surfaces having complex microscale patterns with three-dimensional geometries.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces," Mater. Sci. Eng. R-Reports72, 253–292 (2011).
  2. Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004).
    [CrossRef] [PubMed]
  3. D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng.19(11), 115002 (2009).
    [CrossRef]
  4. T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010).
    [CrossRef] [PubMed]
  5. J. G. Fernandez and A. Khademhosseini, “Micro-masonry: Construction of 3D structures by microscale self-assembly,” Adv. Mater.22(23), 2538–2541 (2010).
    [CrossRef] [PubMed]
  6. N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
    [CrossRef]
  7. C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
    [CrossRef] [PubMed]
  8. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
    [CrossRef]
  9. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
    [CrossRef]
  10. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010).
    [CrossRef] [PubMed]
  11. C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
    [CrossRef]
  12. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
    [CrossRef]
  13. S. Maruo, “Femtosecond laser stereolithography and replication technique for MEMS application,” in Conference on Lasers Electro Optics The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM ’09 (2009), pp. 1–2.
    [CrossRef]
  14. D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct.19(10), 103001 (2010).
    [CrossRef]
  15. L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
    [CrossRef] [PubMed]
  16. C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007).
    [CrossRef] [PubMed]
  17. F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express18(21), 21826–21840 (2010).
    [CrossRef] [PubMed]
  18. K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
    [CrossRef] [PubMed]
  19. X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005).
    [CrossRef] [PubMed]
  20. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
    [CrossRef]
  21. D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
    [CrossRef]
  22. R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
    [CrossRef] [PubMed]
  23. M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).
  24. T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011).
    [CrossRef]
  25. D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
    [CrossRef]
  26. A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005).
    [CrossRef] [PubMed]
  27. J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
    [CrossRef]
  28. S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express18(20), 21490–21497 (2010).
    [CrossRef] [PubMed]
  29. S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
    [CrossRef]
  30. S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
    [CrossRef]
  31. Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
    [CrossRef]

2012

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
[CrossRef] [PubMed]

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

2011

T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011).
[CrossRef]

D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
[CrossRef]

J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
[CrossRef]

A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces," Mater. Sci. Eng. R-Reports72, 253–292 (2011).

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
[CrossRef]

2010

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett.35(10), 1602–1604 (2010).
[CrossRef] [PubMed]

D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct.19(10), 103001 (2010).
[CrossRef]

L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
[CrossRef] [PubMed]

F. Madani-Grasset and Y. Bellouard, “Femtosecond laser micromachining of fused silica molds,” Opt. Express18(21), 21826–21840 (2010).
[CrossRef] [PubMed]

T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010).
[CrossRef] [PubMed]

J. G. Fernandez and A. Khademhosseini, “Micro-masonry: Construction of 3D structures by microscale self-assembly,” Adv. Mater.22(23), 2538–2541 (2010).
[CrossRef] [PubMed]

S. Rajesh and Y. Bellouard, “Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy,” Opt. Express18(20), 21490–21497 (2010).
[CrossRef] [PubMed]

2009

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng.19(11), 115002 (2009).
[CrossRef]

2008

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
[CrossRef]

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

2007

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007).
[CrossRef] [PubMed]

2005

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005).
[CrossRef] [PubMed]

X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005).
[CrossRef] [PubMed]

2004

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching,” Opt. Express12(10), 2120–2129 (2004).
[CrossRef] [PubMed]

2003

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Acikgoz, C.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
[CrossRef]

Arzt, E.

L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
[CrossRef] [PubMed]

C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007).
[CrossRef] [PubMed]

Bado, P.

Baldacchini, T.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Baroud, C. N.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

Barrot, F.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Bassik, N.

N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
[CrossRef]

Bazargan, V.

J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
[CrossRef]

Bellouard, Y.

Beresna, M.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Bico, J.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

Bock, C.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

Boesel, L. F.

L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
[CrossRef] [PubMed]

Bottinelli, S.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Breguet, J.-M.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Brown, X. Q.

X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005).
[CrossRef] [PubMed]

Campo, A. D.

C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007).
[CrossRef] [PubMed]

Champion, A.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Chappius, O.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Chen, Q.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

Chen, Q.-D.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Cheung, K. C.

J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
[CrossRef]

Choi, K. M.

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Clavel, R.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Corbari, C.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Cotton, D. P. J.

D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
[CrossRef]

Decossas, S.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

del Campo, A.

L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
[CrossRef] [PubMed]

Doppler, L.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

Dugan, M.

Farrer, R. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Feinberg, A. W.

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
[CrossRef] [PubMed]

Fellner, T.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
[CrossRef]

Fernandez, J. G.

J. G. Fernandez and A. Khademhosseini, “Micro-masonry: Construction of 3D structures by microscale self-assembly,” Adv. Mater.22(23), 2538–2541 (2010).
[CrossRef] [PubMed]

Fleischman, A. J.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005).
[CrossRef] [PubMed]

Flueckiger, J.

J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
[CrossRef]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Fuard, D.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

Gecevicius, M.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Gracias, D. H.

T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010).
[CrossRef] [PubMed]

N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
[CrossRef]

Graz, I. M.

D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
[CrossRef]

Greiner, C.

L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
[CrossRef] [PubMed]

C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007).
[CrossRef] [PubMed]

Hashimoto, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Hempenius, M. A.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
[CrossRef]

Hoenninger, C.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Hopper, M.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Hui, C.-Y.

A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces," Mater. Sci. Eng. R-Reports72, 253–292 (2011).

Huskens, J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
[CrossRef]

Jagota, A.

A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces," Mater. Sci. Eng. R-Reports72, 253–292 (2011).

Jamal, M.

N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
[CrossRef]

Jeong, O. C.

T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011).
[CrossRef]

Juodkazis, S.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

Kazansky, P.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Khademhosseini, A.

J. G. Fernandez and A. Khademhosseini, “Micro-masonry: Construction of 3D structures by microscale self-assembly,” Adv. Mater.22(23), 2538–2541 (2010).
[CrossRef] [PubMed]

Kim, D.

Kim, J. K.

T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011).
[CrossRef]

Kim, T. K.

T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011).
[CrossRef]

Kiyama, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Kral, M.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Lacour, S. P.

D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
[CrossRef]

LaFratta, C. N.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Lenssen, B.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Leong, T. G.

T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010).
[CrossRef] [PubMed]

Liu, M.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

Lopez, J.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Mabillard, Y.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Madani-Grasset, F.

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

S. Maruo, “Femtosecond laser stereolithography and replication technique for MEMS application,” in Conference on Lasers Electro Optics The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM ’09 (2009), pp. 1–2.
[CrossRef]

Mata, A.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005).
[CrossRef] [PubMed]

Matsuo, S.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

Matteucci, M.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Menon, C.

D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct.19(10), 103001 (2010).
[CrossRef]

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng.19(11), 115002 (2009).
[CrossRef]

Misawa, H.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

Mizeikis, V.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

Morihira, Y.

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Mottay, E.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Naughton, M. J.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Ookawa, K.

X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005).
[CrossRef] [PubMed]

Palchesko, R. N.

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
[CrossRef] [PubMed]

Popel, A.

D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
[CrossRef]

Py, C.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

Rajesh, S.

Reverdy, P.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

Rogers, J. A.

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

Roman, B.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

Roy, S.

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005).
[CrossRef] [PubMed]

Said, A.

Saleh, B. E. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Sameoto, D.

D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct.19(10), 103001 (2010).
[CrossRef]

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng.19(11), 115002 (2009).
[CrossRef]

Schaap, A.

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

Schiavone, P.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

Schneider, F.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
[CrossRef]

So, P. T. C.

Stern, G. M.

N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
[CrossRef]

Stoeber, B.

J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
[CrossRef]

Sun, H.-B.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Sun, J.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

Sun, Y.

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
[CrossRef] [PubMed]

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

Teich, M. C.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

Tracqui, P.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

Tzvetkova-Chevolleau, T.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

Vancso, G. J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
[CrossRef]

Wallrabe, U.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
[CrossRef]

Wilde, J.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
[CrossRef]

Wong, J. Y.

X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005).
[CrossRef] [PubMed]

Xia, H.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Yamasaki, K.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

Zarafshar, A. M.

T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010).
[CrossRef] [PubMed]

Zhang, L.

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
[CrossRef] [PubMed]

Zhang, Y.-L.

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Adv. Mater.

J. G. Fernandez and A. Khademhosseini, “Micro-masonry: Construction of 3D structures by microscale self-assembly,” Adv. Mater.22(23), 2538–2541 (2010).
[CrossRef] [PubMed]

N. Bassik, G. M. Stern, M. Jamal, and D. H. Gracias, “Patterning thin film mechanical properties to drive assembly of complex 3D structures,” Adv. Mater.20(24), 4760–4764 (2008).
[CrossRef]

L. F. Boesel, C. Greiner, E. Arzt, and A. del Campo, “Gecko-inspired surfaces: A path to strong and reversible dry adhesives,” Adv. Mater.22(19), 2125–2137 (2010).
[CrossRef] [PubMed]

Appl. Phys. Mater. Sci. Process.

S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. Mater. Sci. Process.79(4-6), 1549–1553 (2004).
[CrossRef]

Biomaterials

X. Q. Brown, K. Ookawa, and J. Y. Wong, “Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response,” Biomaterials26(16), 3123–3129 (2005).
[CrossRef] [PubMed]

Biomed. Microdevices

A. Mata, A. J. Fleischman, and S. Roy, “Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems,” Biomed. Microdevices7(4), 281–293 (2005).
[CrossRef] [PubMed]

Eur. Polym. J.

C. Acikgoz, M. A. Hempenius, J. Huskens, and G. J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” Eur. Polym. J.47(11), 2033–2052 (2011).
[CrossRef]

J. Am. Chem. Soc.

K. M. Choi and J. A. Rogers, “A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime,” J. Am. Chem. Soc.125(14), 4060–4061 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

D. P. J. Cotton, A. Popel, I. M. Graz, and S. P. Lacour, “Photopatterning the mechanical properties of polydimethylsiloxane films,” J. Appl. Phys.109(5), 054905 (2011).
[CrossRef]

J. Laser Micronanoengineering

Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappius, M. Kral, R. Clavel, F. Barrot, J.-M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, and J. Lopez, “The femtoprint project,” J. Laser Micronanoengineering7(1), 1–10 (2012).
[CrossRef]

J. Micromech. Microeng.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng.18(6), 065008 (2008).
[CrossRef]

D. Sameoto and C. Menon, “A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives,” J. Micromech. Microeng.19(11), 115002 (2009).
[CrossRef]

J. Phys. Chem. B

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, “Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs,” J. Phys. Chem. B108(31), 11256–11258 (2004).
[CrossRef]

J. Phys. Chem. C

S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, “Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates,” J. Phys. Chem. C113(27), 11560–11566 (2009).
[CrossRef]

Langmuir

C. Greiner, A. D. Campo, and E. Arzt, “Adhesion of bioinspired micropatterned Surfaces: Effects of pillar radius, aspect ratio, and preload,” Langmuir23(7), 3495–3502 (2007).
[CrossRef] [PubMed]

Laser Photonics Rev.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev.2(1-2), 100–111 (2008).
[CrossRef]

Mater. Sci. Eng. R-Reports

A. Jagota and C.-Y. Hui, “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces," Mater. Sci. Eng. R-Reports72, 253–292 (2011).

Microelectron. Eng.

D. Fuard, T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone, “Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility,” Microelectron. Eng.85(5-6), 1289–1293 (2008).
[CrossRef]

T. K. Kim, J. K. Kim, and O. C. Jeong, “Measurement of nonlinear mechanical properties of PDMS elastomer,” Microelectron. Eng.88(8), 1982–1985 (2011).
[CrossRef]

Nano Today

Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, “Designable 3D nanofabrication by femtosecond laser direct writing,” Nano Today5(5), 435–448 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

C. Py, P. Reverdy, L. Doppler, J. Bico, B. Roman, and C. N. Baroud, “Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet,” Phys. Rev. Lett.98(15), 156103 (2007).
[CrossRef] [PubMed]

PLoS ONE

R. N. Palchesko, L. Zhang, Y. Sun, and A. W. Feinberg, “Development of Polydimethylsiloxane Substrates with Tunable Elastic Modulus to Study Cell Mechanobiology in Muscle and Nerve,” PLoS ONE7(12), e51499 (2012).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

J. Flueckiger, V. Bazargan, B. Stoeber, and K. C. Cheung, “Characterization of postfabricated parylene C coatings inside PDMS microdevices,” Sens. Actuators B Chem.160(1), 864–874 (2011).
[CrossRef]

Small

T. G. Leong, A. M. Zarafshar, and D. H. Gracias, “Three-dimensional fabrication at small size scales,” Small6(7), 792–806 (2010).
[CrossRef] [PubMed]

Smart Mater. Struct.

D. Sameoto and C. Menon, “Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives,” Smart Mater. Struct.19(10), 103001 (2010).
[CrossRef]

Thickness-dependent mechanical properties of polydimethylsiloxane membranes

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromechanics Microengineering19, 035028 (2009).

Other

S. Maruo, “Femtosecond laser stereolithography and replication technique for MEMS application,” in Conference on Lasers Electro Optics The Pacific Rim Conference on Lasers and Electro-Optics, 2009. CLEO/PACIFIC RIM ’09 (2009), pp. 1–2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Top) Fabrication process: a femtosecond laser modifies regions of the fused silica substrate (step 1); the modified regions are selectively etching 2.5% hydrofluoric acid (step 2); after the application of a chemical treatment to decrease mold adhesion (step 3), PDMS is poured over the glass mold (step 4), cured, and removed (step 5). (Bottom) The test structure; thin-shelled cylinders of varying diameter were fabricated, with the nominal (machined) ratios of 1/3 ≤ d/D ≤ 3. Each section is 75 µm high, and the largest diameter is 100 µm; the diameter of the other sections are varied to change the d/D ratio.

Fig. 2
Fig. 2

The COMSOL model used to determine the maximum von Mises stresses on the PDMS using the Mooney-Rivlin hyperelastic material formulation. The first model (a) merely imposed a radial expansion on the PDMS for every combination of d/D values tested experimentally. The second model (b) modeled the complete geometry and demolding process for the middle d/D ratio. In both models, the direction of motion in the model is indicated with white arrows, and the instantaneous von Mises stress on the PDMS is plotted.

Fig. 3
Fig. 3

SEM images of the PDMS mold, after being demolded from the glass and coated with gold for imaging. Single (a, b) and double (c, d) shapes are shown, with d/D < 1 (a) and d/D > 1 (b). The shapes as in (a) were modeled to predict demolding success. (e-h) Rows of shapes with decreasing d/D by row. Particularly in (e), the heights are uneven due to inconsistent etching rates.

Fig. 4
Fig. 4

(Left) The maximum von Mises stress as a function of demolding progress, from the complete model (Fig. 2(b)) for the case d/D = 0.64, for three different hyperelasticity constants. (Right) The maximum von Mises stress on the PDMS during the linear elastic and hyperelastic model of radial expansion only (Fig. 2(a)) for d/D < 1 (i.e., the cases in which the PDMS stretched around the glass during demolding). Also shown are the experimental rates of successful demolding. For the hyperelastic model, the points represent the model results with the constant C10 at 150 kPa while the error bars represent the effect of changing it from 75 kPa to 300 kPa.

Fig. 5
Fig. 5

Identification of demolding success rates is done by comparing the SEM images (left) to images taken of the mold soaked in rhodamine (right); the rhodamine method shows that the top-right shape is incompletely etched in the mold, since there is no rhodamine-infused PDMS broken off in the mold as for the broken samples.

Fig. 6
Fig. 6

Examples of PDMS structures fabricated by molding from femtosecond-laser-machined glass substrates. These structures demonstrate the demolding of (a) mushroom-shaped features with significant overhang, (b) thin-walled complex shapes, (c) conical pillars, (d) complex features created by scratching a glass substrate with a diamond-tipped scriber. Highly-repeatable arrays of features (e-h) can also be demolded, including (e) high-aspect ratio pillars, (f) hollow cylinders, and (g) filled cylinders made by molding through-holes in a glass substrate. PDMS demolding allows examination of the machining quality of buried features, which are difficult or impossible to optically image; (h) shows the sidewall quality of the center-bottom pillar in (g). Scale bars for (a)-(g) are 100 µm and for (h), 30 µm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F hoop =εEtL
F friction =μεEA

Metrics