Abstract

III-VI compounds In2S3 and In2Se3 are potential optical-absorption materials used for solar energy conversion and photon detection applications. The natural surface oxide and intrinsic chalcogen vacancies in In2X3 (X = S, Se) facilitate photoelectric conversion in near infrared (NIR) to ultraviolet (UV) region. In this work, In2S3 and In2Se3 crystals have been grown by chemical vapor transport method using ICl3 as a transport agent. The as-grown In2S3 presents β phase with a tetragonal lattice (β-In2S3) while In2Se3 reveals a hexagonal layer structure of α phase (α-In2Se3). The band-edge property of β-In2S3 and α-In2Se3 has been evaluated by transmittance and thermoreflectance spectroscopy. The direct band gaps have been determined to be Eg = 1.935 eV for β-In2S3, and Eg = 1.453 eV for α-In2Se3, respectively. The optoelectronic and photoelectric conversion properties of III-VI In2S3 and In2Se3 are examined by surface photovoltage, surface photoconductive response, photoluminescence, and photoconductivity measurements. The experimental evaluations show In2X3 a well-functional material in photoelectric conversion and photodetection from near IR to UV region with the auxiliary of intrinsic defects and surface formation oxides existed in the chalcogenides.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
    [CrossRef]
  2. S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
    [CrossRef]
  3. R. Diehl and R. Nitsche, “Vapour and flux growth of γ-In2S3, a new modification of indium sesquisulphide,” J. Cryst. Growth20(1), 38–46 (1973).
    [CrossRef]
  4. S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
    [CrossRef]
  5. M. Ishikawa and T. Nakayama, “Stacking and optical properties of layered In2Se3,” Jpn. J. Appl. Phys.37(Part 2, No. 10A), L1122–L1124 (1998).
    [CrossRef]
  6. M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Jpn. J. Appl. Phys.36(Part 2, No. 12A), L1576–L1579 (1997).
    [CrossRef]
  7. W. Rehwald and G. Harbeke, “On the conduction mechanism in single crystal β-indium sulfide In2S3,” J. Phys. Chem. Solids26(8), 1309–1324 (1965).
    [CrossRef]
  8. S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
    [CrossRef]
  9. J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
    [CrossRef]
  10. J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
    [CrossRef]
  11. R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
    [CrossRef]
  12. Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010).
    [CrossRef]
  13. C. H. Ho, “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals,” J. Cryst. Growth312(19), 2718–2723 (2010).
    [CrossRef]
  14. C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
    [CrossRef]
  15. G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
    [CrossRef]
  16. D. E. Aspnes, in Handbook on Semiconductors, edited by M. Balkanski (North Holland, 1980).
  17. R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
    [CrossRef]
  18. C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
    [CrossRef]
  19. R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
    [CrossRef]
  20. C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
    [CrossRef] [PubMed]

2013 (1)

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

2010 (3)

Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010).
[CrossRef]

C. H. Ho, “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals,” J. Cryst. Growth312(19), 2718–2723 (2010).
[CrossRef]

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

2008 (2)

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

2006 (1)

R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
[CrossRef]

2005 (1)

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

2004 (1)

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

2003 (1)

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

2002 (1)

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

1999 (1)

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

1998 (3)

M. Ishikawa and T. Nakayama, “Stacking and optical properties of layered In2Se3,” Jpn. J. Appl. Phys.37(Part 2, No. 10A), L1122–L1124 (1998).
[CrossRef]

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
[CrossRef]

1997 (1)

M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Jpn. J. Appl. Phys.36(Part 2, No. 12A), L1576–L1579 (1997).
[CrossRef]

1996 (1)

S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
[CrossRef]

1973 (1)

R. Diehl and R. Nitsche, “Vapour and flux growth of γ-In2S3, a new modification of indium sesquisulphide,” J. Cryst. Growth20(1), 38–46 (1973).
[CrossRef]

1965 (1)

W. Rehwald and G. Harbeke, “On the conduction mechanism in single crystal β-indium sulfide In2S3,” J. Phys. Chem. Solids26(8), 1309–1324 (1965).
[CrossRef]

Aguilera, I.

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

Ahn, B. T.

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

Barreau, N.

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

Bernéde, J. C.

S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
[CrossRef]

Bernède, J. C.

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

Carda, J.

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Chaiken, A.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Chan, C. H.

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

Chen, S. H.

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

Chen, Y. C.

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

Cheng, Z. H.

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Combot-Marie, A. M.

S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
[CrossRef]

Conan, A.

S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
[CrossRef]

Conesa, J. C.

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

Diehl, R.

R. Diehl and R. Nitsche, “Vapour and flux growth of γ-In2S3, a new modification of indium sesquisulphide,” J. Cryst. Growth20(1), 38–46 (1973).
[CrossRef]

Escribano, P.

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Gibson, G. A.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Grimm, A.

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Harbeke, G.

W. Rehwald and G. Harbeke, “On the conduction mechanism in single crystal β-indium sulfide In2S3,” J. Phys. Chem. Solids26(8), 1309–1324 (1965).
[CrossRef]

Hariskos, D.

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

Ho, C. H.

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

C. H. Ho, “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals,” J. Cryst. Growth312(19), 2718–2723 (2010).
[CrossRef]

Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010).
[CrossRef]

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Horley, G. A.

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

Huang, Y. S.

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010).
[CrossRef]

Ishikawa, M.

M. Ishikawa and T. Nakayama, “Stacking and optical properties of layered In2Se3,” Jpn. J. Appl. Phys.37(Part 2, No. 10A), L1122–L1124 (1998).
[CrossRef]

M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Jpn. J. Appl. Phys.36(Part 2, No. 12A), L1576–L1579 (1997).
[CrossRef]

Jansinski, J.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Jayakrishnan, R.

R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
[CrossRef]

Kartha, C. S.

R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
[CrossRef]

Kim, S. K.

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

Klaer, J.

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Klenk, R.

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Kwon, S. H.

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

Lee, H. W.

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Li, C. H.

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

Liliental-Weber, Z.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Lin, C. H.

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

Lincot, D.

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

Lucena, R.

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

Marsillac, S.

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
[CrossRef]

Mokrani, A.

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

Naghavi, N.

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

Nakamura, Y.

J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
[CrossRef]

Nakayama, T.

M. Ishikawa and T. Nakayama, “Stacking and optical properties of layered In2Se3,” Jpn. J. Appl. Phys.37(Part 2, No. 10A), L1122–L1124 (1998).
[CrossRef]

M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Jpn. J. Appl. Phys.36(Part 2, No. 12A), L1576–L1579 (1997).
[CrossRef]

Nauka, K.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Nitsche, R.

R. Diehl and R. Nitsche, “Vapour and flux growth of γ-In2S3, a new modification of indium sesquisulphide,” J. Cryst. Growth20(1), 38–46 (1973).
[CrossRef]

Nittono, O.

J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
[CrossRef]

O’Brien, P.

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

Palacios, P.

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

Park, J.-H.

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

Powalla, M.

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

Rehwald, W.

W. Rehwald and G. Harbeke, “On the conduction mechanism in single crystal β-indium sulfide In2S3,” J. Phys. Chem. Solids26(8), 1309–1324 (1965).
[CrossRef]

Robles, R.

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

Soeda, S.

J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
[CrossRef]

Song, J.

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

Spiering, S.

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

Sreekumar, R.

R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
[CrossRef]

Swider, W.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Todorov, T.

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Vega, A.

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

Vijayakumar, K. P.

R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
[CrossRef]

Wahnón, P.

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

Wang, Y. P.

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010).
[CrossRef]

Washburn, J.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

White, A. J. P.

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

Williams, D. J.

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

Yang, C. C.

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Ye, J.

J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
[CrossRef]

Yoon, K. H.

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

ACS Appl. Mater. Interfaces (1)

C. H. Ho, C. H. Lin, Y. P. Wang, Y. C. Chen, S. H. Chen, and Y. S. Huang, “Surface oxide effect on optical sensing and photoelectric conversion of α-In2Se3 hexagonal microplates,” ACS Appl. Mater. Interfaces5(6), 2269–2277 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Jansinski, W. Swider, J. Washburn, Z. Liliental-Weber, A. Chaiken, K. Nauka, G. A. Gibson, and C. C. Yang, “Crystal structure of κ-In2Se3,” Appl. Phys. Lett.81(23), 4356–4358 (2002).
[CrossRef]

Chem. Mater. (1)

R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, “Synthesis and spectral properties of nanocrystalline V-substituted In2S3, a novel material for more efficient use of solar radiation,” Chem. Mater.20(16), 5125–5127 (2008).
[CrossRef]

J. Appl. Phys. (2)

C. H. Ho, Y. P. Wang, C. H. Chan, Y. S. Huang, and C. H. Li, “Temperature-dependent photoconductivity in β-In2S3 single crystals,” J. Appl. Phys.108(4), 043518 (2010).
[CrossRef]

R. Sreekumar, R. Jayakrishnan, C. S. Kartha, and K. P. Vijayakumar, “Anomalous photoconductivity in gamma In2Se3,” J. Appl. Phys.100(3), 033707 (2006).
[CrossRef]

J. Cryst. Growth (2)

C. H. Ho, “Growth and characterization of near-band-edge transitions in β-In2S3 single crystals,” J. Cryst. Growth312(19), 2718–2723 (2010).
[CrossRef]

R. Diehl and R. Nitsche, “Vapour and flux growth of γ-In2S3, a new modification of indium sesquisulphide,” J. Cryst. Growth20(1), 38–46 (1973).
[CrossRef]

J. Mater. Chem. (1)

G. A. Horley, P. O’Brien, J.-H. Park, A. J. P. White, and D. J. Williams, “Deposition of tetragonal β-In2S3 thin films from tris(N,N-diisopropylmonothiocarbamato)indium(III), In(SOCNiPr2)3, by low pressure metal-organic chemical vapour deposition,” J. Mater. Chem.9(6), 1289–1292 (1999).
[CrossRef]

J. Phys. Chem. Solids (1)

W. Rehwald and G. Harbeke, “On the conduction mechanism in single crystal β-indium sulfide In2S3,” J. Phys. Chem. Solids26(8), 1309–1324 (1965).
[CrossRef]

J. Phys. D Appl. Phys. (1)

Y. P. Wang, C. H. Ho, and Y. S. Huang, “The study of photoconductive response in indium sulfide crystals,” J. Phys. D Appl. Phys.43(41), 415301 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (3)

M. Ishikawa and T. Nakayama, “Stacking and optical properties of layered In2Se3,” Jpn. J. Appl. Phys.37(Part 2, No. 10A), L1122–L1124 (1998).
[CrossRef]

M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered In2Se3,” Jpn. J. Appl. Phys.36(Part 2, No. 12A), L1576–L1579 (1997).
[CrossRef]

J. Ye, S. Soeda, Y. Nakamura, and O. Nittono, “Crystal structure and phase transformation in In2Se3 compound semiconductor,” Jpn. J. Appl. Phys.37(Part 1, No. 8), 4264–4271 (1998).
[CrossRef]

Opt. Mater. (1)

R. Robles, N. Barreau, A. Vega, S. Marsillac, J. C. Bernède, and A. Mokrani, “Optical properties of large band gap β-In2S3−3xO3x compounds obtained by physical vapour deposition,” Opt. Mater.27(4), 647–653 (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

C. H. Ho, H. W. Lee, and Z. H. Cheng, “Practical thermoreflectance design for optical characterization of layer semiconductors,” Rev. Sci. Instrum.75(4), 1098–1102 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer, and R. Klenk, “Electro deposited In2S3 buffer layers for CuInS2 solar cells,” Sol. Energy Mater. Sol. Cells92(10), 1274–1278 (2008).
[CrossRef]

Thin Solid Films (3)

S. H. Kwon, B. T. Ahn, S. K. Kim, K. H. Yoon, and J. Song, “Growth of CuIn3Se5 layer on CuInSe2 films and its effect on the photovoltaic properties of In2Se3/CuInSe2 solar cells,” Thin Solid Films323(1-2), 265–269 (1998).
[CrossRef]

S. Spiering, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, “Cd-free Cu(In,Ga)Se2 thin-film solar modules with In2S3 buffer layer by ALCVD,” Thin Solid Films431–432, 359–363 (2003).
[CrossRef]

S. Marsillac, A. M. Combot-Marie, J. C. Bernéde, and A. Conan, “Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction,” Thin Solid Films288(1-2), 14–20 (1996).
[CrossRef]

Other (1)

D. E. Aspnes, in Handbook on Semiconductors, edited by M. Balkanski (North Holland, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Crystal morphology of β-In2S3 and α-In2Se3 crystals. The left hand side shows the crystal picture of β-In2S3 which seems to be a cubic- or tetragonal-like structure. The right hand side displays the SEM image of layered α-In2Se3 which presents a beautiful cluster of hexagonal micro plates at the basal plane edge of α-In2Se3.

Fig. 2
Fig. 2

Transmittance and TR spectra of (a) β-In2S3 and (b) α-In2Se3 semiconductors. The TR transition features (transition energies) matched well with the center locations of the transmittance spectra for the two chalcogenides. The experimental evidence indicated that β-In2S3 and α-In2Se3 are direct semiconductors.

Fig. 3
Fig. 3

(a) Surface polished and surface unpolished PL spectra of β-In2S3 at 300 K. (b) The PL spectra of hexagonal α-In2Se3 semiconductor at 20 and 300 K. The lower insets respectively depict the surface formation oxide on the sample plane.

Fig. 4
Fig. 4

(a) The PC and SPR spectra of β-In2S3 at 300 K. The operation modes for the PC and SPR measurements are also included. (b) The PC and SPR spectra of hexagonal α-In2Se3. (c) Lower-energy test of the PC spectrum of α-In2Se3. The inset depicts a representative scheme of defect and band-edge transitions for the indium chalcogenides.

Metrics