Abstract

High-quality (YbxY1-x)3(Sc1.5Ga0.5)Ga3O12 (Yb:YSGG) (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, and 1) single crystals have been successfully grown by the optical floating zone (OFZ) method. The phase purity and atomic structure were analyzed in detail by employing X-ray powder diffraction (XRPD) with Rietveld refinement. Chemical composition was measured and investigated by X-ray fluorescence (XRF). The results of thermal survey show that the thermal conductivity declines from 6.543 W·m−1·K−1 for YSGG to 3.708 W·m−1·K−1 for the 50 at.% Yb3+-doped crystal, but rises to 4.425 W·m−1·K−1 for the 100 at.% sample (YbSGG). The systematically spectroscopic investigations suggest that the crystal field of Yb3+ in Yb:YSGG crystals is almost independent of the Yb3+ dopant concentration and the fluorescence quenching only appears in the high Yb3+-doped crystal.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
    [CrossRef] [PubMed]
  2. G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
    [CrossRef]
  3. A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
    [CrossRef]
  4. K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
    [CrossRef]
  5. C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
    [CrossRef] [PubMed]
  6. U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter51(18), 12133–12141 (1995).
    [CrossRef] [PubMed]
  7. K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
    [CrossRef]
  8. M. Trzeciecki, A. Dähn, and W. Hübner, “Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets,” Phys. Rev. B60(2), 1144–1160 (1999).
    [CrossRef]
  9. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
    [CrossRef]
  10. M. Tsunekanea and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
    [CrossRef]
  11. S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
    [CrossRef]
  12. P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
    [CrossRef]
  13. H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
    [CrossRef]
  14. G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
    [CrossRef]
  15. R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
    [CrossRef]
  16. T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
    [CrossRef] [PubMed]
  17. P. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B19(10), 2365–2375 (2002).
    [CrossRef]
  18. F. Daniel, D. B. F. John, R. V. Steven, D. S. Wolf, and T. W. Joseph, “Caries inhibition potential of Er:YAG and Er:YSGG laser radiation,” Proc. SPIE, Lasers in Dentistry II, 2672, 73–78 (1996).
  19. B. J. Dinerman and P. F. Moulton, “3-microm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett.19(15), 1143–1145 (1994).
    [CrossRef] [PubMed]
  20. J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
    [CrossRef]
  21. G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron.24(6), 920–923 (1988).
    [CrossRef]
  22. K. Zhong, J. Yao, C. Sun, C. Zhang, Y. Miao, R. Wang, D. Xu, F. Zhang, Q. Zhang, D. Sun, and S. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
    [CrossRef] [PubMed]
  23. C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
    [CrossRef]
  24. Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
    [CrossRef]
  25. S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: a review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
    [CrossRef]
  26. S. Biswal, S. P. O’Connor, and S. R. Bowman, “Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12,” Appl. Phys. Lett.89(9), 091911 (2006).
    [CrossRef]
  27. A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
    [CrossRef]
  28. M. A. Noginov, P. Venkateswarlu, and M. Mahdi, “Two-step upconversion luminescence in Yb:Tb:YSGG crystal,” J. Opt. Soc. Am. B13(4), 735–741 (1996).
    [CrossRef]
  29. G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
    [CrossRef]
  30. G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst.14(6), 357–361 (1981).
    [CrossRef]
  31. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
    [CrossRef]
  32. R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth79(1-3), 669–680 (1986).
    [CrossRef]
  33. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  34. P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
    [CrossRef]
  35. M. Kokta, “Solubility enhancement of Nd7+ in scandium-substituted rare earth-aluminum garnets,” J. Solid State Chem.8(1), 39–42 (1973).
    [CrossRef]
  36. S. Chénais, F. Druon, F. Balembois, P. Georges, R. Gaumé, P. H. Haumesser, B. Viana, G. P. Aka, and D. Vivien, “Spectroscopy and efficient laser action from diode pumping of a new broadly tunable crystal: Yb3+:Sr3Y(BO3)3,” J. Opt. Soc. Am. B19(5), 1083–1091 (2002).
    [CrossRef]
  37. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
    [CrossRef]
  38. C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
    [CrossRef]
  39. L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem.2(2), 137–143 (1970).
    [CrossRef]
  40. Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
    [CrossRef]
  41. F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
    [CrossRef] [PubMed]
  42. S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
    [CrossRef]
  43. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt.9(11), 2548–2553 (1970).
    [CrossRef] [PubMed]
  44. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals,” J. Opt. Soc. Am. B21(3), 543–547 (2004).
    [CrossRef]
  45. P. A. Giesting and A. M. Hofmeister, “Thermal conductivity of disordered garnets from infrared spectroscopy,” Phys. Rev. B65(14), 144305 (2002).
    [CrossRef]
  46. M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys.38(6), 2706–2707 (1967).
    [CrossRef]
  47. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
    [CrossRef]
  48. R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
    [CrossRef]
  49. S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
    [CrossRef]
  50. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
    [CrossRef]
  51. S. X. Wang, K. Wu, Y. C. Wang, H. H. Yu, H. J. Zhang, X. P. Tian, Q. B. Dai, and J. H. Liu, “Spectral and lasing investigations of Yb:YSGG crystal,” Opt. Express21(14), 16305–16310 (2013).
    [CrossRef] [PubMed]
  52. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M. C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett.36(24), 4746–4748 (2011).
    [CrossRef] [PubMed]
  53. Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett.34(21), 3316–3318 (2009).
    [CrossRef] [PubMed]
  54. S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
    [CrossRef]
  55. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
    [CrossRef]
  56. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20(21), 23535–23541 (2012).
    [CrossRef] [PubMed]
  57. K. Beil, B. Deppe, and C. Kränkel, “Yb:CaGdAlO4 thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range,” Opt. Lett.38(11), 1966–1968 (2013).
    [CrossRef] [PubMed]

2013

2012

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20(21), 23535–23541 (2012).
[CrossRef] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
[CrossRef]

2011

2010

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

2009

2008

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: a review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

2007

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

M. Tsunekanea and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
[CrossRef]

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

2006

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

S. Biswal, S. P. O’Connor, and S. R. Bowman, “Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12,” Appl. Phys. Lett.89(9), 091911 (2006).
[CrossRef]

2004

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
[CrossRef]

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, “Structural, thermal, and luminescent properties of Yb-doped Y3Al5O12 crystals,” J. Opt. Soc. Am. B21(3), 543–547 (2004).
[CrossRef]

2003

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

2002

S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

S. Chénais, F. Druon, F. Balembois, P. Georges, R. Gaumé, P. H. Haumesser, B. Viana, G. P. Aka, and D. Vivien, “Spectroscopy and efficient laser action from diode pumping of a new broadly tunable crystal: Yb3+:Sr3Y(BO3)3,” J. Opt. Soc. Am. B19(5), 1083–1091 (2002).
[CrossRef]

P. Haumesser, R. Gaumé, B. Viana, and D. Vivien, “Determination of laser parameters of ytterbium-doped oxide crystalline materials,” J. Opt. Soc. Am. B19(10), 2365–2375 (2002).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

P. A. Giesting and A. M. Hofmeister, “Thermal conductivity of disordered garnets from infrared spectroscopy,” Phys. Rev. B65(14), 144305 (2002).
[CrossRef]

2001

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

2000

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

1999

M. Trzeciecki, A. Dähn, and W. Hübner, “Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets,” Phys. Rev. B60(2), 1144–1160 (1999).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

1998

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

1996

1995

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

1994

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

B. J. Dinerman and P. F. Moulton, “3-microm cw laser operations in erbium-doped YSGG, GGG, and YAG,” Opt. Lett.19(15), 1143–1145 (1994).
[CrossRef] [PubMed]

1993

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

1992

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

1990

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

1988

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron.24(6), 920–923 (1988).
[CrossRef]

1986

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth79(1-3), 669–680 (1986).
[CrossRef]

1981

G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst.14(6), 357–361 (1981).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1973

M. Kokta, “Solubility enhancement of Nd7+ in scandium-substituted rare earth-aluminum garnets,” J. Solid State Chem.8(1), 39–42 (1973).
[CrossRef]

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

1970

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem.2(2), 137–143 (1970).
[CrossRef]

W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt.9(11), 2548–2553 (1970).
[CrossRef] [PubMed]

1969

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

1967

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys.38(6), 2706–2707 (1967).
[CrossRef]

1966

P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
[CrossRef]

1960

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

Abell, J. S.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: a review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Aka, G. P.

Albrecht, G. F.

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

Allik, T. H.

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Amann, M. C.

Anselmi-Tamburini, U.

C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
[CrossRef]

Apolonski, A.

Baer, C. R.

Balembois, F.

Barns, R. L.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

Bass, M.

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys.38(6), 2706–2707 (1967).
[CrossRef]

Beil, K.

Bettinelli, M. J.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

Biswal, S.

S. Biswal, S. P. O’Connor, and S. R. Bowman, “Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12,” Appl. Phys. Lett.89(9), 091911 (2006).
[CrossRef]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Boehm, G.

Boulon, G.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Bowman, S. R.

S. Biswal, S. P. O’Connor, and S. R. Bowman, “Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12,” Appl. Phys. Lett.89(9), 091911 (2006).
[CrossRef]

Brandle, C. D.

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Bray, K. L.

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

Brenier, A.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Brons, J.

Bulska, E.

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

Buscaglia, V.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
[CrossRef]

Castel, E.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Chai, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

Chaminade, J. P.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Chénais, S.

Crandall, P. B.

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

Czeranowsky, C.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

Dähn, A.

M. Trzeciecki, A. Dähn, and W. Hübner, “Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets,” Phys. Rev. B60(2), 1144–1160 (1999).
[CrossRef]

Dai, Q. B.

Dapiaggi, M.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Deng, P.

Denisov, A. L.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Deppe, B.

Deren, P. J.

P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
[CrossRef]

Diening, A.

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

Dinerman, B. J.

Dobrzycki, L.

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

Dong, G.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

Druon, F.

Duczynski, E. W.

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron.24(6), 920–923 (1988).
[CrossRef]

Eichler, H. J.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

Emaury, F.

Endo, T.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Espinosa, G. P.

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

Feigelson, R. S.

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth79(1-3), 669–680 (1986).
[CrossRef]

Fischer, P.

P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
[CrossRef]

Flynn, V. J.

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem.2(2), 137–143 (1970).
[CrossRef]

Fort, D.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: a review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Frukacz, Z.

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

Fujimoto, Y.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Fukabori, A.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Funaki, A.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Gagor, A.

P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
[CrossRef]

Gaumé, R.

Geller, S.

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

Gennari, S.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

George, E. V.

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

Georges, P.

Ghigna, P.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Giesting, P. A.

P. A. Giesting and A. M. Hofmeister, “Thermal conductivity of disordered garnets from infrared spectroscopy,” Phys. Rev. B65(14), 144305 (2002).
[CrossRef]

Golling, M.

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Grasse, C.

Gruber, J. B.

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Güdel, H. U.

S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

Haelg, W.

P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
[CrossRef]

Hatanaka, T.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Haumesser, P.

Haumesser, P. H.

Heckl, O. H.

Heer, S.

S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

Hills, M. D.

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

Hoffmann, M.

Hofmeister, A. M.

P. A. Giesting and A. M. Hofmeister, “Thermal conductivity of disordered garnets from infrared spectroscopy,” Phys. Rev. B65(14), 144305 (2002).
[CrossRef]

Hömmerich, U.

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Huber, G.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron.24(6), 920–923 (1988).
[CrossRef]

Hübner, W.

M. Trzeciecki, A. Dähn, and W. Hübner, “Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets,” Phys. Rev. B60(2), 1144–1160 (1999).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Ikesue, A.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

Ileri, B.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

Jiang, M.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Kalashnikov, V. L.

Kamada, K.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

Keller, U.

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, and U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express20(21), 23535–23541 (2012).
[CrossRef] [PubMed]

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Kito, T.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Koechner, W.

Kokta, M.

M. Kokta, “Solubility enhancement of Nd7+ in scandium-substituted rare earth-aluminum garnets,” J. Solid State Chem.8(1), 39–42 (1973).
[CrossRef]

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem.2(2), 137–143 (1970).
[CrossRef]

Kokta, M. R.

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Kolobanov, V.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Konzlikin, S. N.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Koohpayeh, S. M.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: a review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Krämer, K.

S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

Kränkel, C.

Krausz, F.

Krupke, W. F.

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Kück, S.

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

Kumar, A.

R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
[CrossRef]

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Latynina, A.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Lavrishchev, S. V.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Li, D. H.

Li, R.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Li, X.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Li, Y.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Lin, C.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Lin, J. F.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Liu, J.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Liu, J. H.

Lutts, G. B.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Maglia, F.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
[CrossRef]

Mahajan, R.

R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
[CrossRef]

Mahdi, M.

Miao, Y.

Mikhailin, V.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Milanese, C.

C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
[CrossRef]

Molina, P.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Morrison, C. A.

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Moulton, P. F.

Mourou, G. A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Mythili, P.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Naoe, K.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Nejezchleb, K.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Nikl, M.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Noginov, M. A.

O’Connor, S. P.

S. Biswal, S. P. O’Connor, and S. R. Bowman, “Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12,” Appl. Phys. Lett.89(9), 091911 (2006).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Pal, S.

R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
[CrossRef]

Paladino, A. E.

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys.38(6), 2706–2707 (1967).
[CrossRef]

Pappalardo, R.

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Pawlak, D. A.

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

Pawley, G. S.

G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst.14(6), 357–361 (1981).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Pazik, R.

P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
[CrossRef]

Pejchal, J.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Pervak, V.

Petermann, K.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron.24(6), 920–923 (1988).
[CrossRef]

Pronin, O.

Qiu, J.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

Samoylova, S. A.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Saraceno, C. J.

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

Savchyn, V.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Schriber, C.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Segmueller, A.

P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
[CrossRef]

Seltzer, M. E.

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

Shah, A. L.

R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Shimamura, K.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Song, P.

Sooy, W. R.

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

Spassky, D.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Speghini, A.

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Stevens, S. B.

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

Stoll, E.

P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
[CrossRef]

Strohmaier, S. G. P.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

Suchow, L.

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem.2(2), 137–143 (1970).
[CrossRef]

Südmeyer, T.

Sun, C.

Sun, D.

Sutton, S. B.

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

Taira, T.

M. Tsunekanea and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

Tian, X. P.

Trzeciecki, M.

M. Trzeciecki, A. Dähn, and W. Hübner, “Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets,” Phys. Rev. B60(2), 1144–1160 (1999).
[CrossRef]

Tsunekanea, M.

M. Tsunekanea and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Tsutumi, K.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Veber, P.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Venkateswarlu, P.

Viana, B.

Vivien, D.

Vlllora, E. G.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

Voloshinovskii, A.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Voznyak, T.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Wang, J.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Wang, J. L.

Wang, J. Y.

Wang, R.

Wang, S. X.

Wang, Y. C.

Wang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Watras, A.

P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
[CrossRef]

Wei, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Wei, Z. Y.

Wermuth, M.

S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Wood, D. L.

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

Wozniak, K.

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

Wu, K.

Xiong, L.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Xu, C. W.

Xu, D.

Xu, J.

Xu, X.

Yakovlev, A. A.

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

Yanagida, T.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Yang, P.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Yang, Z.

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

Yao, B.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Y. D. Zhang, Z. Y. Wei, B. B. Zhou, C. W. Xu, Y. W. Zou, D. H. Li, Z. G. Zhang, H. J. Zhang, J. Y. Wang, H. H. Yu, K. Wu, B. Yao, and J. L. Wang, “Diode-pumped passively mode-locked Yb:Y3Ga5O12 laser,” Opt. Lett.34(21), 3316–3318 (2009).
[CrossRef] [PubMed]

Yao, J.

Yin, S.

Yin, Z.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Yoshikawa, A.

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

Yu, H.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Yu, H. H.

Zagumennyi, A. I.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Zavartsev, Yu. D.

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

Zhang, C.

Zhang, F.

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

Zhang, H.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, H. J.

Zhang, Q.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

K. Zhong, J. Yao, C. Sun, C. Zhang, Y. Miao, R. Wang, D. Xu, F. Zhang, Q. Zhang, D. Sun, and S. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011).
[CrossRef] [PubMed]

Zhang, X.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, Y.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, Y. D.

Zhang, Z.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

Zhang, Z. G.

Zhao, Z.

Zharikov, E. V.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Zhong, K.

Zhou, B. B.

Zhou, G.

Zorenko, Yu.

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Zou, Y. W.

Acta Crystallogr.

P. Fischer, W. Haelg, E. Stoll, and A. Segmueller, “X-ray and neutron diffraction study of the substitutional disorder in the yttrium-iron-gallium garnets,” Acta Crystallogr.21(5), 765–769 (1966).
[CrossRef]

Acta Crystallogr. A

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. A. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B69(1), 3–17 (1999).
[CrossRef]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Appl. Phys. Lett.

S. Biswal, S. P. O’Connor, and S. R. Bowman, “Nonradiative losses in Yb:KGd(WO4)2 and Yb:Y3Al5O12,” Appl. Phys. Lett.89(9), 091911 (2006).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett.85(11), 1898–1900 (2004).
[CrossRef]

M. Tsunekanea and T. Taira, “High-power operation of diode edge-pumped, composite all-ceramic Yb:Y3Al5O12 microchip laser,” Appl. Phys. Lett.90(12), 121101 (2007).
[CrossRef]

Chem. Mater.

C. Milanese, V. Buscaglia, F. Maglia, and U. Anselmi-Tamburini, “Disorder and nonstoichiometry in synthetic garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). a simulation study,” Chem. Mater.16(7), 1232–1239 (2004).
[CrossRef]

Cryst. Growth Des.

K. Shimamura, T. Kito, E. Castel, A. Latynina, P. Molina, E. G. Vĺllora, P. Mythili, P. Veber, J. P. Chaminade, A. Funaki, T. Hatanaka, and K. Naoe, “Growth of {Tb3}[Sc2-xLux](Al3)O12 single crystals for visible-infrared optical isolators,” Cryst. Growth Des.10(8), 3466–3470 (2010).
[CrossRef]

K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, and M. Nikl, “Composition engineering in cerium-doped (Lu,Gd)3(Ga,Al)5O12 single-crystal scintillators,” Cryst. Growth Des.11(10), 4484–4490 (2011).
[CrossRef]

P. J. Dereń, A. Watras, A. Gagor, and R. Pazik, “Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+,” Cryst. Growth Des.12(10), 4752–4757 (2012).
[CrossRef]

IEEE J. Quantum Electron.

H. Yu, K. Wu, B. Yao, H. Zhang, Z. Wang, J. Wang, Y. Zhang, Z. Wei, Z. Zhang, X. Zhang, and M. Jiang, “Growth and characteristics of Yb-doped Y3Ga5O12 laser crystal,” IEEE J. Quantum Electron.46(12), 1689–1695 (2010).
[CrossRef]

G. Huber, E. W. Duczynski, and K. Petermann, “Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature,” IEEE J. Quantum Electron.24(6), 920–923 (1988).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron.29(4), 1179–1191 (1993).
[CrossRef]

Inorg. Chem.

C. Lin, J. Liu, J. F. Lin, X. Li, Y. Li, Q. Zhang, L. Xiong, and R. Li, “Garnet-to-perovskite transition in Gd3Sc2Ga3O12 at high pressure and high temperature,” Inorg. Chem.52(1), 431–434 (2013).
[CrossRef] [PubMed]

Ł. Dobrzycki, E. Bulska, D. A. Pawlak, Z. Frukacz, and K. Woźniak, “Structure of YAG crystals doped/substituted with erbium and ytterbium,” Inorg. Chem.43(24), 7656–7664 (2004).
[CrossRef] [PubMed]

J. Appl. Cryst.

G. S. Pawley, “Unit-cell refinement from powder diffraction scans,” J. Appl. Cryst.14(6), 357–361 (1981).
[CrossRef]

S. Geller, G. P. Espinosa, and P. B. Crandall, “Thermal expansion of yttrium and gadolinium iron, gallium and aluminum garnets,” J. Appl. Cryst.2(2), 86–88 (1969).
[CrossRef]

J. Appl. Phys.

J. B. Gruber, M. E. Seltzer, M. D. Hills, S. B. Stevens, and C. A. Morrison, “Analysis of the optical spectra of trivalent holmium in yttrium scandium gallium garnet,” J. Appl. Phys.72(11), 5253–5264 (1992).
[CrossRef]

A. Diening and S. Kück, “Spectroscopy and diode-pumped laser oscillation of Yb3+, Ho3+-doped yttrium scandium gallium garnet,” J. Appl. Phys.87(9), 4063–4068 (2000).
[CrossRef]

M. Bass and A. E. Paladino, “Color centers in yttrium gallium garnet and yttrium aluminum garnet,” J. Appl. Phys.38(6), 2706–2707 (1967).
[CrossRef]

J. Chem. Phys.

R. Pappalardo and D. L. Wood, “Spectrum of Yb3+ in yttrium gallium garnet,” J. Chem. Phys.33(6), 1734–1742 (1960).
[CrossRef]

J. Cryst. Growth

R. S. Feigelson, “Pulling optical fibers,” J. Cryst. Growth79(1-3), 669–680 (1986).
[CrossRef]

C. D. Brandle and R. L. Barns, “Crystal stoichiometry and growth of rare-earth garnets containing scandium,” J. Cryst. Growth20(1), 1–5 (1973).
[CrossRef]

Yu. D. Zavartsev and A. A. Yakovlev, “Surface tension and electrocapillary phenomena of yttrium scandium gallium garnet melts,” J. Cryst. Growth142(1-2), 129–132 (1994).
[CrossRef]

J. Lumin.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

F. Maglia, V. Buscaglia, S. Gennari, P. Ghigna, M. Dapiaggi, A. Speghini, and M. J. Bettinelli, “Incorporation of trivalent cations in synthetic garnets A3B5O12 (A = Y, Lu-La, B = Al, Fe, Ga),” J. Phys. Chem. B110(13), 6561–6568 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

G. Chai, G. Dong, J. Qiu, Q. Zhang, and Z. Yang, “2.7 μm emission from transparent Er3+, Tm3+ codoped yttrium aluminum garnet (Y3Al5O12) nanocrystals–tellurate glass composites by novel comelting technology,” J. Phys. Chem. C116(37), 19941–19950 (2012).
[CrossRef]

J. Solid State Chem.

M. Kokta, “Solubility enhancement of Nd7+ in scandium-substituted rare earth-aluminum garnets,” J. Solid State Chem.8(1), 39–42 (1973).
[CrossRef]

L. Suchow, M. Kokta, and V. J. Flynn, “New garnet compounds with trivalent rare-earth ions on both dodecahedral and octahedral sites,” J. Solid State Chem.2(2), 137–143 (1970).
[CrossRef]

Laser & Photon. Rev.

A. A. Kaminskii, “Laser crystals and ceramics: recent advances,” Laser & Photon. Rev.1(2), 93–177 (2007).
[CrossRef]

Laser and Particle Beams

G. F. Albrecht, S. B. Sutton, E. V. George, W. R. Sooy, and W. F. Krupke, “Solid state heat capacity disk laser,” Laser and Particle Beams16(04), 605–626 (1998).
[CrossRef]

Opt. Commun.

S. G. P. Strohmaier, H. J. Eichler, C. Czeranowsky, B. Ileri, K. Petermann, and G. Huber, “Diode pumped Nd: GSAG and Nd: YGG laser at 942 and 935nm,” Opt. Commun.275(1), 170–172 (2007).
[CrossRef]

Opt. Express

Opt. Laser Technol.

R. Mahajan, A. L. Shah, S. Pal, and A. Kumar, “Analytical study for investigating the behavior of Nd-doped Glass, YAG and GGG under the heat capacity mode of operation,” Opt. Laser Technol.39(7), 1406–1412 (2007).
[CrossRef]

Opt. Lett.

Opt. Mater.

S. Chénais, F. Druon, F. Balembois, P. Georges, A. Brenier, and G. Boulon, “Diode-pumped Yb:GGG laser: comparison with Yb:YAG,” Opt. Mater.22(2), 99–106 (2003).
[CrossRef]

Opt. Quantum Electron.

G. B. Lutts, A. L. Denisov, E. V. Zharikov, A. I. Zagumennyi, S. N. Konzlikin, S. V. Lavrishchev, and S. A. Samoylova, “GSAG and YSAG: a study on isomorphism and crystal growth,” Opt. Quantum Electron.22(S1), S269–S281 (1990).
[CrossRef]

Phys. Rev. B

P. A. Giesting and A. M. Hofmeister, “Thermal conductivity of disordered garnets from infrared spectroscopy,” Phys. Rev. B65(14), 144305 (2002).
[CrossRef]

M. Trzeciecki, A. Dähn, and W. Hübner, “Symmetry analysis of second-harmonic generation at surfaces of antiferromagnets,” Phys. Rev. B60(2), 1144–1160 (1999).
[CrossRef]

S. Heer, M. Wermuth, K. Krämer, and H. U. Güdel, “Sharp 2E upconversion luminescence of Cr3+ in Y3Ga5O12 codoped with Cr3+ and Yb3+,” Phys. Rev. B65(12), 125112 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter

U. Hömmerich and K. L. Bray, “High-pressure laser spectroscopy of Cr3+:Gd3Sc2Ga3O12 and Cr3+:Gd3Ga5O12.,” Phys. Rev. B Condens. Matter51(18), 12133–12141 (1995).
[CrossRef] [PubMed]

T. H. Allik, C. A. Morrison, J. B. Gruber, and M. R. Kokta, “Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12.,” Phys. Rev. B Condens. Matter41(1), 21–30 (1990).
[CrossRef] [PubMed]

Phys. Status Solidi

Yu. Zorenko, A. Voloshinovskii, V. Savchyn, T. Voznyak, M. Nikl, K. Nejezchleb, V. Mikhailin, V. Kolobanov, and D. Spassky, “Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets,” Phys. Status Solidi244(6), 2180–2189 (2007) (b).
[CrossRef]

Prog. Cryst. Growth Charact. Mater.

S. M. Koohpayeh, D. Fort, and J. S. Abell, “The optical floating zone technique: a review of experimental procedures with special reference to oxides,” Prog. Cryst. Growth Charact. Mater.54(3-4), 121–137 (2008).
[CrossRef]

Other

F. Daniel, D. B. F. John, R. V. Steven, D. S. Wolf, and T. W. Joseph, “Caries inhibition potential of Er:YAG and Er:YSGG laser radiation,” Proc. SPIE, Lasers in Dentistry II, 2672, 73–78 (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics