Abstract

In this study, the film growth kinetics for near and mid-IR reflection enhancing CdS and PbS dielectric thin films in HGWs is experimentally established. Crucial fabrication parameters including solution concentrations, pH, and fluid velocity are optimized. The film thickness of these films in HGWs is studied as a function of deposition time and temperature. Through IR spectral response analysis, the dielectric thin film thicknesses were determined and found to have a strong linear time dependence. Accurate metal sulfide film growth models in HGWs were developed, allowing for direct determination of necessary deposition times to yield metal sulfide HGW thin film coatings having a desired response.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2004).
  2. V. Gopal and J. A. Harrington, “Dielectric coatings for Ag/dielectric hollow glass waveguides,” Proc. SPIE4616, 143–151 (2002).
    [CrossRef]
  3. V. Gopal and J. A. Harrington, “Metal sulfide coatings for hollow glass waveguides,” Proc. SPIE4957, 97–103 (2003).
    [CrossRef] [PubMed]
  4. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  5. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
    [CrossRef]
  6. V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express11(24), 3182–3187 (2003).
    [CrossRef] [PubMed]
  7. C. M. Bledt, D. V. Kopp, and J. A. Harrington, “Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Silver Coated Hollow Glass Waveguides (HGWS) for Infrared Spectroscopy and Laser Delivery,” in Advances and Applications in Electroceramics II: Ceramic Transactions, Volume 235, eds K. M. Nair and S. Priya (John Wiley & Sons, Inc., 2012)
  8. C. D. Rabii, D. J. Gibson, and J. A. Harrington, “Processing and characterization of silver films used to fabricate hollow glass waveguides,” Appl. Opt.38(21), 4486–4493 (1999).
    [CrossRef] [PubMed]
  9. T. P. Niesen and M. R. DeGuire, “Review: Deposition of ceramic thin films at low temperatures from aqueous solutions,” J. Electroceram.6(3), 169–207 (2001).
    [CrossRef]
  10. G. Hodes, Chemical Solution Deposition of Semiconductor Films (Marcel Dekker, Inc., 2003).
  11. R. Ortega-Borges and D. Lincot, “Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system,” J. Electrochem. Soc.140(12), 3464 (1993).
    [CrossRef]
  12. M. Bouroushian, Electrochemistry of Metal Chalcogenides (Springer, 2010).
  13. D. Lincot and G. Hodes, Chemical Solution Deposition of Semiconducting and Non-Metallic Films (The Electrochemical Society, 2006).
  14. C. Guillén, M. A. Martinez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films335(1-2), 37–42 (1998).
    [CrossRef]
  15. R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys.65(1), 1–31 (2000).
    [CrossRef]
  16. R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
    [CrossRef]

2006

R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
[CrossRef]

2003

2002

V. Gopal and J. A. Harrington, “Dielectric coatings for Ag/dielectric hollow glass waveguides,” Proc. SPIE4616, 143–151 (2002).
[CrossRef]

2001

T. P. Niesen and M. R. DeGuire, “Review: Deposition of ceramic thin films at low temperatures from aqueous solutions,” J. Electroceram.6(3), 169–207 (2001).
[CrossRef]

2000

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys.65(1), 1–31 (2000).
[CrossRef]

1999

1998

C. Guillén, M. A. Martinez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films335(1-2), 37–42 (1998).
[CrossRef]

1993

R. Ortega-Borges and D. Lincot, “Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system,” J. Electrochem. Soc.140(12), 3464 (1993).
[CrossRef]

1984

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

DeGuire, M. R.

T. P. Niesen and M. R. DeGuire, “Review: Deposition of ceramic thin films at low temperatures from aqueous solutions,” J. Electroceram.6(3), 169–207 (2001).
[CrossRef]

Gibson, D. J.

Gopal, V.

V. Gopal and J. A. Harrington, “Deposition and characterization of metal sulfide dielectric coatings for hollow glass waveguides,” Opt. Express11(24), 3182–3187 (2003).
[CrossRef] [PubMed]

V. Gopal and J. A. Harrington, “Metal sulfide coatings for hollow glass waveguides,” Proc. SPIE4957, 97–103 (2003).
[CrossRef] [PubMed]

V. Gopal and J. A. Harrington, “Dielectric coatings for Ag/dielectric hollow glass waveguides,” Proc. SPIE4616, 143–151 (2002).
[CrossRef]

Guillén, C.

C. Guillén, M. A. Martinez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films335(1-2), 37–42 (1998).
[CrossRef]

Gujar, T. P.

R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
[CrossRef]

Harrington, J. A.

Herrero, J.

C. Guillén, M. A. Martinez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films335(1-2), 37–42 (1998).
[CrossRef]

Kawakami, S.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

Lincot, D.

R. Ortega-Borges and D. Lincot, “Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system,” J. Electrochem. Soc.140(12), 3464 (1993).
[CrossRef]

Lokhande, C. D.

R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
[CrossRef]

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys.65(1), 1–31 (2000).
[CrossRef]

Mane, R. S.

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys.65(1), 1–31 (2000).
[CrossRef]

Martinez, M. A.

C. Guillén, M. A. Martinez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films335(1-2), 37–42 (1998).
[CrossRef]

Miyagi, M.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

Niesen, T. P.

T. P. Niesen and M. R. DeGuire, “Review: Deposition of ceramic thin films at low temperatures from aqueous solutions,” J. Electroceram.6(3), 169–207 (2001).
[CrossRef]

Ortega-Borges, R.

R. Ortega-Borges and D. Lincot, “Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system,” J. Electrochem. Soc.140(12), 3464 (1993).
[CrossRef]

Pathan, H. M.

R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
[CrossRef]

Patil, R. S.

R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
[CrossRef]

Rabii, C. D.

Appl. Opt.

J. Electroceram.

T. P. Niesen and M. R. DeGuire, “Review: Deposition of ceramic thin films at low temperatures from aqueous solutions,” J. Electroceram.6(3), 169–207 (2001).
[CrossRef]

J. Electrochem. Soc.

R. Ortega-Borges and D. Lincot, “Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia-thiourea system,” J. Electrochem. Soc.140(12), 3464 (1993).
[CrossRef]

J. Lightwave Technol.

M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

J. Mater. Sci.

R. S. Patil, H. M. Pathan, T. P. Gujar, and C. D. Lokhande, “Characterization of chemically deposited PbS thin films,” J. Mater. Sci.41(17), 5723–5725 (2006).
[CrossRef]

Mater. Chem. Phys.

R. S. Mane and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Mater. Chem. Phys.65(1), 1–31 (2000).
[CrossRef]

Opt. Express

Proc. SPIE

V. Gopal and J. A. Harrington, “Dielectric coatings for Ag/dielectric hollow glass waveguides,” Proc. SPIE4616, 143–151 (2002).
[CrossRef]

V. Gopal and J. A. Harrington, “Metal sulfide coatings for hollow glass waveguides,” Proc. SPIE4957, 97–103 (2003).
[CrossRef] [PubMed]

Thin Solid Films

C. Guillén, M. A. Martinez, and J. Herrero, “Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters,” Thin Solid Films335(1-2), 37–42 (1998).
[CrossRef]

Other

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE Press, 2004).

M. Bouroushian, Electrochemistry of Metal Chalcogenides (Springer, 2010).

D. Lincot and G. Hodes, Chemical Solution Deposition of Semiconducting and Non-Metallic Films (The Electrochemical Society, 2006).

G. Hodes, Chemical Solution Deposition of Semiconductor Films (Marcel Dekker, Inc., 2003).

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

C. M. Bledt, D. V. Kopp, and J. A. Harrington, “Dielectric II-VI and IV-VI Metal Chalcogenide Thin Films in Silver Coated Hollow Glass Waveguides (HGWS) for Infrared Spectroscopy and Laser Delivery,” in Advances and Applications in Electroceramics II: Ceramic Transactions, Volume 235, eds K. M. Nair and S. Priya (John Wiley & Sons, Inc., 2012)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-sectional representation of a) single and b) multiple dielectric layer film coated hollow glass waveguides (HGWs).

Fig. 2
Fig. 2

Schematic of DLPD configuration for the deposition of PbS and CdS thin films in HGWs.

Fig. 3
Fig. 3

Mid-IR spectral response of a) Ag/CdS and b) Ag/PbS coated HGWs at increasing thin film deposition times.

Fig. 4
Fig. 4

Film thickness as a function of CdS deposition time on a) Ag and b) Ag/PbS coated HGWs at different deposition temperatures.

Fig. 5
Fig. 5

Film thickness as a function of PbS deposition time on a) Ag and b) Ag/CdS coated HGWs at different deposition temperatures.

Fig. 6
Fig. 6

Film thickness as a function of waveguide position for a) CdS and b) PbS films deposited on an Ag coated HGW at T = 30 °C.

Tables (2)

Tables Icon

Table 1 Linear coefficients for CdS film growth

Tables Icon

Table 2 Linear coefficients for PbS film growth

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d O = λ d 2π n F 2 1 tan 1 ( n F ( n F 2 1 ) 1 4 )        
d 0 = λ d 4 n F 2 1   
Cd ( N H 3 ) 4 2+ [ aq ] +2O H [ aq ] Cd ( OH ) 2 [ ads ] +4N H 3 [ aq ]   
Cd ( OH ) 2 [ads] +SC ( N H 2 ) 2 [aq] Cd S [ s ] + H 2 NC N [ aq ] +2 H 2 O [ l ]    
Pb ( OH ) 6 4 [ aq ]  +SC ( N H 2 ) 2 [ aq ]   Pb S [s] + H 2 NC N [ aq ] +4O H [ aq ] +2 H 2 O [ l ]  
d F = λ n λ n1 4 n F 2 1

Metrics