Abstract

High crystallinity GeSn substitutional alloy thin films with up to 8.7 at.% Sn are directly grown on amorphous SiO2 layers at low crystallization temperatures of 370~470 °C for potential applications in 3D electronic-photonic integration on Si as well as inexpensive virtual substrates for tandem solar cells. The optimal Ge0.913Sn0.087 thin film demonstrates a strong (111) texture and an average gain size of 10 μm, and its grain boundaries are mostly twin and low-angle boundaries with low densities of defect recombination centers. The 8.7 at.% Sn incorporated substitutionally into the Ge lattice far exceeds the ~1 at.% equilibrium solubility limit. Correspondingly, the direct band gap is significantly red-shifted from 0.8 eV for pure Ge to ~0.5 eV for crystalline Ge0.913Sn0.087, right at the verge of the indirect-to-direct gap transition that occurs at 8-10 at.% Sn alloying. Optoelectronic properties are greatly enhanced due to this transition.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
    [CrossRef]
  2. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE Sel. Top. Quantum. Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  3. J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
    [CrossRef]
  4. D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
    [CrossRef] [PubMed]
  5. M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
    [CrossRef]
  6. J. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010).
    [CrossRef] [PubMed]
  7. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojoromeo, F. Mandorlo, D. Marris Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, 2006), pp. 200–202.
  8. P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express15(20), 12686–12691 (2007).
    [CrossRef] [PubMed]
  9. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express18(4), 3487–3493 (2010).
    [CrossRef] [PubMed]
  10. K. Wada, “Challenges of Si Photonics for on-chip Integration,” in Proceedings of European Conference of Optical Communication (ECOC), (Vienna, Austria, September, 2009), paper 2.7.3.
  11. F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bull.32(03), 230–235 (2007).
    [CrossRef]
  12. H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
    [CrossRef]
  13. C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
    [CrossRef]
  14. C. M. Yang and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett.68(24), 3392–3394 (1996).
    [CrossRef]
  15. K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
    [CrossRef]
  16. S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J.-Y. J. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in Proceedings of IEEE Electronic Device Meeting (Institute of Electrical and Electronics Engineers, San Francisco, 2012), pp. 16.2.1–16.2.4.
    [CrossRef]
  17. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
    [CrossRef]
  18. R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
    [CrossRef]
  19. B. Predel, “Ge-Sn binary phase diagram,” in Landolt-Börnstein Database: Group IV Physical Chemistry, Numerical Data and Functional Relationship in Science and Technology. O. Madelung ed. New Series IV/5, vol. 5f (Springer, 2013). http://www.springermaterials.com/docs/info/10501684_1506.html .
  20. V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
    [CrossRef]
  21. R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
    [CrossRef]
  22. W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
    [CrossRef]
  23. G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett.79(10), 1937–1940 (1997).
    [CrossRef]
  24. H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
    [CrossRef]
  25. M. G. Mauk, Liquid Phase Epitaxy of Electronic, Optical, and Optoelectronic Materials (Wiley, 2007), Chap. 5.
  26. A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001).
    [CrossRef]
  27. R. A. Soref and L. Friedman, “Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct.14(2-3), 189–193 (1993).
    [CrossRef]
  28. R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
    [CrossRef]
  29. R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc.110(6), 524–527 (1963).
    [CrossRef]
  30. R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
    [CrossRef]
  31. P. Water, Stress Analysis and Mechanical Characterization of Thin Films for Microelectronics and MEMS Applications (ProQuest, 2008), Chap. 3, pp. 78–95.
  32. V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
    [CrossRef]
  33. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989).
    [CrossRef] [PubMed]
  34. J. F. Shackelford, Introduction to Materials Science for Engineers, 5th Ed. (Prentice-Hall, 2000), Chap. 4.
  35. W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
    [CrossRef]
  36. A. Frova and P. Handler, “Franz-Keldysh effect in the space-charge region of a germanium p-n junction,” Phys. Rev.137(6A), A1857–A1862 (1965).
    [CrossRef]
  37. J. F. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009).
    [CrossRef] [PubMed]

2012 (1)

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

2011 (3)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

2010 (3)

2009 (2)

J. F. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009).
[CrossRef] [PubMed]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

2008 (2)

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

2007 (7)

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
[CrossRef]

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

R. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bull.32(03), 230–235 (2007).
[CrossRef]

P. Koonath and B. Jalali, “Multilayer 3-D photonics in silicon,” Opt. Express15(20), 12686–12691 (2007).
[CrossRef] [PubMed]

2006 (2)

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE Sel. Top. Quantum. Electron.12(6), 1678–1687 (2006).
[CrossRef]

2005 (1)

H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
[CrossRef]

2004 (1)

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

2003 (1)

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
[CrossRef]

2001 (1)

A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001).
[CrossRef]

1997 (1)

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett.79(10), 1937–1940 (1997).
[CrossRef]

1996 (1)

C. M. Yang and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett.68(24), 3392–3394 (1996).
[CrossRef]

1993 (1)

R. A. Soref and L. Friedman, “Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct.14(2-3), 189–193 (1993).
[CrossRef]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989).
[CrossRef] [PubMed]

1965 (1)

A. Frova and P. Handler, “Franz-Keldysh effect in the space-charge region of a germanium p-n junction,” Phys. Rev.137(6A), A1857–A1862 (1965).
[CrossRef]

1963 (1)

R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc.110(6), 524–527 (1963).
[CrossRef]

Ahn, D. H.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Al-Jassim, M.

W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
[CrossRef]

Apsel, A.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

Atsushi, K.

H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
[CrossRef]

Atwater, H. A.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett.79(10), 1937–1940 (1997).
[CrossRef]

C. M. Yang and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett.68(24), 3392–3394 (1996).
[CrossRef]

Beals, M.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Beattie, J.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

Beeler, R. T.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

Bernardis, S.

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Bett, A. W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Birdwell, A. G.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Camacho-Aguilera, R.

Canonico, M.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Carathers, D.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

Chen, J.

Chen, L. J.

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

Chen, R.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

Cheng, J.

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Cheng, L. W.

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

Cheng, S. L.

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

Chizmeshya, A. V. G.

R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
[CrossRef]

Choi, W.

W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
[CrossRef]

Cook, C. S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

D’Costa, V.

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

D’Costa, V. R.

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Dimroth, F.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bull.32(03), 230–235 (2007).
[CrossRef]

Duan, X.

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

Fang, Y.-Y.

R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
[CrossRef]

Findikoglu, A. T.

W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
[CrossRef]

Friedman, L.

R. A. Soref and L. Friedman, “Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct.14(2-3), 189–193 (1993).
[CrossRef]

Frova, A.

A. Frova and P. Handler, “Franz-Keldysh effect in the space-charge region of a germanium p-n junction,” Phys. Rev.137(6A), A1857–A1862 (1965).
[CrossRef]

Giziewicz, W.

Guha, B.

Guter, W.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Handler, P.

A. Frova and P. Handler, “Franz-Keldysh effect in the space-charge region of a germanium p-n junction,” Phys. Rev.137(6A), A1857–A1862 (1965).
[CrossRef]

Harris, J. S.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

He, G.

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett.79(10), 1937–1940 (1997).
[CrossRef]

Hitzman, C.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

Hong, C. Y.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Huo, Y.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

Jaccodine, R. J.

R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc.110(6), 524–527 (1963).
[CrossRef]

Jalali, B.

Kamins, T. I.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

Kanno, H.

H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
[CrossRef]

Kärtner, F. X.

Kaschel, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Kasper, E.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Kimerling, L. C.

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

J. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010).
[CrossRef] [PubMed]

J. F. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009).
[CrossRef] [PubMed]

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

R. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Kirchain, R.

R. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Koonath, P.

Kopa, A.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

Koshchanov, É. A.

A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001).
[CrossRef]

Kouvetakis, J.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
[CrossRef]

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Kurtz, S.

F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bull.32(03), 230–235 (2007).
[CrossRef]

Kyotoku, B. B. C.

Lin, H.

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

Lipson, M.

Littler, C. L.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Liu, J. F.

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

J. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010).
[CrossRef] [PubMed]

J. F. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009).
[CrossRef] [PubMed]

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Mathews, J.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

McComber, K.

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

Menendez, J.

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

Menéndez, J.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Michel, J.

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

J. F. Liu, X. C. Sun, R. Camacho-Aguilera, L. C. Kimerling, and J. Michel, “Ge-on-Si laser operating at room temperature,” Opt. Lett.35(5), 679–681 (2010).
[CrossRef] [PubMed]

J. F. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett.34(11), 1738–1740 (2009).
[CrossRef] [PubMed]

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

D. H. Ahn, C. Y. Hong, J. F. Liu, W. Giziewicz, M. Beals, L. C. Kimerling, J. Michel, J. Chen, and F. X. Kärtner, “High performance, waveguide integrated Ge photodetectors,” Opt. Express15(7), 3916–3921 (2007).
[CrossRef] [PubMed]

Miyao, M.

H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
[CrossRef]

Navarro-Contreras, H.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
[CrossRef]

Oehme, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Oliva, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Pérez Ladrón de Guevara, H.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
[CrossRef]

Philipps, S. P.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Pomerene, A.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Razzakov, A. Sh.

A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001).
[CrossRef]

Rodríguez, A. G.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
[CrossRef]

Romero, M. J.

W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
[CrossRef]

Roucka, R.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
[CrossRef]

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

Sadoh, T.

H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
[CrossRef]

Saidov, A. S.

A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001).
[CrossRef]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Schmid, M.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Schöne, J.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Schulze, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Siefer, G.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Soref, R. A.

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE Sel. Top. Quantum. Electron.12(6), 1678–1687 (2006).
[CrossRef]

R. A. Soref and L. Friedman, “Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct.14(2-3), 189–193 (1993).
[CrossRef]

Sparacin, D.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

Steiner, M.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Sun, R.

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

Sun, X.

Sun, X. C.

Tolle, J.

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989).
[CrossRef] [PubMed]

Vidal, M. A.

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
[CrossRef]

Wekkeli, A.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Welser, E.

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

Yang, C. M.

C. M. Yang and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett.68(24), 3392–3394 (1996).
[CrossRef]

Yeh, P. H.

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

Yu, C. H.

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

Zollner, S.

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Adv. Funct. Mater. (1)

K. McComber, X. Duan, J. F. Liu, J. Michel, and L. C. Kimerling, “Single-crystal germanium growth on amorphous silicon,” Adv. Funct. Mater.22(5), 1048–1057 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

C. M. Yang and H. A. Atwater, “Selective solid phase crystallization for control of grain size and location in Ge thin films on silicon dioxide,” Appl. Phys. Lett.68(24), 3392–3394 (1996).
[CrossRef]

W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009).
[CrossRef]

Appl. Phys. Lett. (4)

H. Pérez Ladrón de Guevara, A. G. Rodríguez, H. Navarro-Contreras, and M. A. Vidal, “Ge1-xSnx alloys pseudomorphically grown on Ge(001),” Appl. Phys. Lett.83(24), 4942–4944 (2003).
[CrossRef]

R. Chen, H. Lin, Y. Huo, C. Hitzman, T. I. Kamins, and J. S. Harris, “Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy,” Appl. Phys. Lett.99(18), 181125 (2011).
[CrossRef]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.98(6), 061108 (2011).
[CrossRef]

R. Roucka, J. Mathews, R. T. Beeler, J. Tolle, J. Kouvetakis, and J. Menéndez, “Direct gap electroluminescence from Si/Ge1-ySny p-i-n heterostructure diodes,” Appl. Phys. Lett.98(6), 061109 (2011).
[CrossRef]

IEEE Sel. Top. Quantum. Electron. (1)

R. A. Soref, “The past, present, and future of silicon photonics,” IEEE Sel. Top. Quantum. Electron.12(6), 1678–1687 (2006).
[CrossRef]

J. Mater. Res. (1)

W. Choi, A. T. Findikoglu, M. J. Romero, and M. Al-Jassim, “Effect of grain alignment on lateral carrier transport in aligned-crystalline silicon films on polycrystalline substrates,” J. Mater. Res.22(04), 821–825 (2007).
[CrossRef]

J. Electrochem. Soc. (1)

R. J. Jaccodine, “Surface Energy of Germanium and Silicon,” J. Electrochem. Soc.110(6), 524–527 (1963).
[CrossRef]

J. Mater. Res. (1)

R. A. Soref, J. Kouvetakis, J. Tolle, J. Menendez, and V. D’Costa, “Advances in SiGeSn technology,” J. Mater. Res.22(12), 3281–3291 (2007).
[CrossRef]

Mater. Sci. Semicond. Process. (1)

H. Kanno, K. Atsushi, T. Sadoh, and M. Miyao, “Ge-enhanced MILC velocity in a-Ge/a-Si/SiO2layered structure,” Mater. Sci. Semicond. Process.8(1-3), 83–88 (2005).
[CrossRef]

MRS Bull. (1)

F. Dimroth and S. Kurtz, “High-efficiency multijunction solar cells,” MRS Bull.32(03), 230–235 (2007).
[CrossRef]

Nat. Photonics (2)

J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultra-low energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008).
[CrossRef]

R. Kirchain and L. C. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics1(6), 303–305 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

A. Frova and P. Handler, “Franz-Keldysh effect in the space-charge region of a germanium p-n junction,” Phys. Rev.137(6A), A1857–A1862 (1965).
[CrossRef]

Phys. Rev. B (2)

R. Roucka, Y.-Y. Fang, J. Kouvetakis, A. V. G. Chizmeshya, and J. Menéndez, “Thermal expansivity of Ge1-ySny alloys,” Phys. Rev. B81(24), 245214 (2010).
[CrossRef]

V. R. D’Costa, C. S. Cook, A. G. Birdwell, C. L. Littler, M. Canonico, S. Zollner, J. Kouvetakis, and J. Menéndez, “Optical critical points of thin-film Ge1-ySny alloys: a comparative Ge1-ySny/Ge1-xSix study,” Phys. Rev. B73(12), 125207 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter39(3), 1871–1883 (1989).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. He and H. A. Atwater, “Interband transitions in SnxGe1-x alloys,” Phys. Rev. Lett.79(10), 1937–1940 (1997).
[CrossRef]

Proc. SPIE (1)

M. Beals, J. Michel, J. F. Liu, D. H. Ahn, D. Sparacin, R. Sun, C. Y. Hong, L. C. Kimerling, A. Pomerene, D. Carathers, J. Beattie, A. Kopa, and A. Apsel, “Process flow innovations for photonic device integration in CMOS,” Proc. SPIE6898, 689804, 689804-14 (2008).
[CrossRef]

Solid State Commun. (1)

V. R. D’Costa, J. Tolle, R. Roucka, J. Kouvetakis, and J. Menendez, “Raman scattering in Ge1-ySny alloys,” Solid State Commun.144(5-6), 240–244 (2007).
[CrossRef]

Superlattices Microstruct. (1)

R. A. Soref and L. Friedman, “Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures,” Superlattices Microstruct.14(2-3), 189–193 (1993).
[CrossRef]

Tech. Phys. Lett. (1)

A. S. Saidov, A. Sh. Razzakov, and É. A. Koshchanov, “Liquid phase epitaxy of Ge1-xSnx thin fims,” Tech. Phys. Lett.27(8), 698–700 (2001).
[CrossRef]

Thin Solid Films (1)

C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films469–470, 356–360 (2004).
[CrossRef]

Other (7)

K. Wada, “Challenges of Si Photonics for on-chip Integration,” in Proceedings of European Conference of Optical Communication (ECOC), (Vienna, Austria, September, 2009), paper 2.7.3.

B. Predel, “Ge-Sn binary phase diagram,” in Landolt-Börnstein Database: Group IV Physical Chemistry, Numerical Data and Functional Relationship in Science and Technology. O. Madelung ed. New Series IV/5, vol. 5f (Springer, 2013). http://www.springermaterials.com/docs/info/10501684_1506.html .

S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J.-Y. J. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoster, Y. Nishi, and K. C. Saraswat, “Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in Proceedings of IEEE Electronic Device Meeting (Institute of Electrical and Electronics Engineers, San Francisco, 2012), pp. 16.2.1–16.2.4.
[CrossRef]

M. G. Mauk, Liquid Phase Epitaxy of Electronic, Optical, and Optoelectronic Materials (Wiley, 2007), Chap. 5.

P. Water, Stress Analysis and Mechanical Characterization of Thin Films for Microelectronics and MEMS Applications (ProQuest, 2008), Chap. 3, pp. 78–95.

J. F. Shackelford, Introduction to Materials Science for Engineers, 5th Ed. (Prentice-Hall, 2000), Chap. 4.

J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. Rojoromeo, F. Mandorlo, D. Marris Morini, and L. Vivien, “Incorporation of a photonic layer at the metallization levels of a CMOS circuit,” in Proceedings of IEEE International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, 2006), pp. 200–202.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Ge-Sn equilibrium phase diagram. (b) A zoomed-in diagram on the Ge-rich side [19].

Fig. 2
Fig. 2

(a) θ-2θ XRD data of the GeSn sample with 9.5 at.% Sn annealed at 464°C in comparison to a reference pure Ge sample annealed at 660 °C, both for 30 minutes. Note that the vertical axis is in log scale. The inset shows a schematic cross-section of the GeSn sample. (b) Raman spectra of the unannealed and annealed 9.5 at.% Sn sample in comparison to a single crystal Ge reference sample. (c) Crystallization temperature and XRD peak intensity ratio of the strongest peak (111) to the second strongest peak (either (220) or (311)) as a function of the Sn atomic concentration in as-deposited a-GeSn films. The linear fit shows that the crystallization temperature decreases by ~20 °C with 1 at.% increase in the Sn composition. The strongest (111) textured is achieved at 9.5 at.% Sn.

Fig. 3
Fig. 3

(a) SEM image of the GeSn sample with 9.5 at.% Sn after annealing at 464°C for 30 minutes. The bright dots and lines are identified to be Sn segregates by EDS. (b) SEM image of the annealed 9.5 at.% Sn sample after etching away Sn segregates on the surface, leaving behind the highly textured Ge0.913Sn0.087 thin film. (c) EBSD mapping of exactly the same region as shown in (b), where different colors indicate different in-plane crystallographic orientations. Grains that are ~5 μm wide and tens of microns long are observed. The average grain size is ~10 μm (d) EBSD mapping of the GeSn sample with 14.5 at.% Sn after annealing at 410 °C and etching away the Sn precipitates. While there are more small grains present, the average grain size is still ~5 μm.

Fig. 4
Fig. 4

(a) Distribution of misorientation angles between neighboring grains derived from the EBSD data of the highly textured Ge0.913Sn0.087 thin film in Fig. 3(c). The sample is crystallized from the a-GeSn thin film with 9.5 at.% Sn. The inset shows the inverse pole figure obtained over a 0.2 × 0.2 mm2 area, confirming the strong (111) texture. (b) Distribution of misorientation angles between neighboring grains for the 14.5 at.% Sn sample after crystallization annealing and etching away the Sn segregates. The inset shows the inverse pole figure obtained from the same EBSD mapping.

Fig. 5
Fig. 5

(a) Large-area SEM image of the highly textured Ge0.913Sn0.087 thin film previously shown in Figs. 3(b) and 3(c). The sample is crystallized from a-GeSn with 9.5 at.% Sn. The arrows point to 6 nucleation centers in an total area of ~1.6 mm2, from which GeSn grains grow radially. (b) A zoomed-in image of domain 2 in (a). (c) Large-area SEM image of the 14.5 at.% Sn sample after crystallization annealing and etching away Sn segregates. The radiating dendritic feature is still present, but the density of nucleation centers is increased compared to the 9.5 at. % Sn sample shown in (a) and (b). (d) Large-area SEM image of the 16.5 at.% Sn sample after crystallization annealing and etching away Sn segregates. The radiating dendritic feature is no longer present.

Fig. 6
Fig. 6

(a) Transmittance spectrum of the high crystallinity Ge0.913Sn0.087 thin film sample compared to a reference sample without the GeSn thin film. (b) Absorption spectrum of Ge0.913Sn0.087 derived from the transmittance spectrum in (a).

Metrics