Abstract

We report on the fabrication and characterization of femtosecond laser micromachined depressed cladding waveguides in lithium niobate crystal. The cladding structures support two-dimensional guidance of light from the visible to the mid-infrared spectral regimes. Particularly, single-mode propagation of light at a wavelength of 4 μm has been achieved for the waveguides with diameter of 50 μm. It is also found that the thermal annealing treatment reduces the propagation loss lower than 0.5 dB/cm at 1.064 μm, exhibiting good transmission properties for photonic applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).
  2. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  3. D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B88(2), 201–204 (2007).
    [CrossRef]
  4. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
    [CrossRef]
  5. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50(7), 071107 (2011).
    [CrossRef]
  6. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  7. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
    [CrossRef]
  8. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
    [CrossRef] [PubMed]
  9. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
    [CrossRef] [PubMed]
  10. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]
  11. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  12. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,”Laser Photonics Rev. DOI .
    [CrossRef]
  13. H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
    [CrossRef] [PubMed]
  14. Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
    [CrossRef] [PubMed]
  15. H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
    [CrossRef]
  16. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
    [CrossRef]
  17. E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on reverse proton exchange Nd:LiNbO3 channel waveguides,” Opt. Express15(14), 8805–8811 (2007).
    [CrossRef] [PubMed]
  18. A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
    [CrossRef] [PubMed]
  19. J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
    [CrossRef]
  20. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
    [CrossRef]
  21. M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
    [CrossRef]
  22. Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
    [CrossRef] [PubMed]
  23. H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
    [CrossRef]
  24. B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
    [CrossRef]
  25. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
    [CrossRef]
  26. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
    [CrossRef]
  27. H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
    [CrossRef]
  28. C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3.,” Opt. Lett.35(14), 2340–2342 (2010).
    [CrossRef] [PubMed]
  29. G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
    [CrossRef] [PubMed]
  30. A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
    [CrossRef] [PubMed]
  31. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett.37(3), 392–394 (2012).
    [CrossRef] [PubMed]
  32. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  33. RSoft Design Group, Computer software BandSLOVE, http://www.rsoftdesign.com
  34. D. Yevick and W. Bardyszewski, “Correspondence of variational finite-difference (relaxation) and imaginary-distance propagation methods for modal analysis,” Opt. Lett.17(5), 329–330 (1992).
    [CrossRef] [PubMed]

2012 (6)

2011 (7)

G. Z. Mashanovich, M. M. Milošević, M. Nedeljkovic, N. Owens, B. Xiong, E. J. Teo, and Y. Hu, “Low loss silicon waveguides for the mid-infrared,” Opt. Express19(8), 7112–7119 (2011).
[CrossRef] [PubMed]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
[CrossRef] [PubMed]

A. J. Maker and A. M. Armani, “Low-loss silica-on-silicon waveguides,” Opt. Lett.36(19), 3729–3731 (2011).
[CrossRef] [PubMed]

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50(7), 071107 (2011).
[CrossRef]

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

2010 (3)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, “Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on aperiodically poled Mg:LiNbO3.,” Opt. Lett.35(14), 2340–2342 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

2008 (4)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

A. Ródenas, A. H. Nejadmalayeri, D. Jaque, and P. Herman, “Confocal Raman imaging of optical waveguides in LiNbO3 fabricated by ultrafast high-repetition rate laser-writing,” Opt. Express16(18), 13979–13989 (2008).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

2007 (6)

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on reverse proton exchange Nd:LiNbO3 channel waveguides,” Opt. Express15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B88(2), 201–204 (2007).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

1996 (1)

1992 (1)

Ancona, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Arezki, B.

Armani, A. M.

Bardyszewski, W.

Beecher, S.

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Bennion, I.

Bookey, H. T.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Brow, R. K.

Brown, G.

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Busacca, A. C.

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B88(2), 201–204 (2007).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on reverse proton exchange Nd:LiNbO3 channel waveguides,” Opt. Express15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

Cerullo, G.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Chen, D.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Chen, F.

Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

H. L. Liu, Y. C. Jia, J. R. Vázquez de Aldana, D. Jaque, and F. Chen, “Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance,” Opt. Express20(17), 18620–18629 (2012).
[CrossRef] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
[CrossRef]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,”Laser Photonics Rev. DOI .
[CrossRef]

Cheng, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

Chiodo, N.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Cino, A.

Cussó, F.

Davis, K. M.

Döring, S.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Dreisow, F.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Dubs, C.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Fedorov, V.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Fejer, M. M.

Fletcher, L. B.

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Gallmann, L.

Gao, Z. D.

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Guo, H. C.

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

He, F.

Heese, C.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Heinrich, M.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Herman, P.

Herndon, S. C.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Hilbert, V.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Hirao, K.

Honkanen, S.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50(7), 071107 (2011).
[CrossRef]

Hu, H.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

Hu, Y.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Jaque, D.

Jha, A.

Jia, Y. C.

Jose, G.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Kar, A.

Kar, A. K.

Y. Y. Ren, G. Brown, A. Ródenas, S. Beecher, F. Chen, and A. K. Kar, “Mid-infrared waveguide lasers in rare-earth-doped YAG,” Opt. Lett.37(16), 3339–3341 (2012).
[CrossRef] [PubMed]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Keller, U.

Kern, P.

Kim, C.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Krol, D. M.

Labadie, L.

Lee, B. H.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Li, E.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Liao, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

Lifante, G.

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B88(2), 201–204 (2007).
[CrossRef]

E. M. Rodríguez, D. Jaque, E. Cantelar, F. Cussó, G. Lifante, A. C. Busacca, A. Cino, and S. R. Sanseverino, “Time resolved confocal luminescence investigations on reverse proton exchange Nd:LiNbO3 channel waveguides,” Opt. Express15(14), 8805–8811 (2007).
[CrossRef] [PubMed]

Liu, H. L.

Luo, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Maker, A. J.

Martin, G.

Martyshkin, D.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Mashanovich, G. Z.

McManus, J. B.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Mezentsev, V.

Midorikawa, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

Miloševic, M. M.

Mirov, S.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Miura, K.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Moskalev, I.

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Munger, J. W.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Nedeljkovic, M.

Nejadmalayeri, A. H.

Nelson, D. D.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Nolte, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Okhrimchuk, A.

Osellame, R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Owens, N.

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Phillips, C. R.

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Psaila, N.

Psaila, N. D.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Qin, Y. Q.

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

Rademaker, K.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Reis, S. T.

Ren, Y. Y.

Ricken, R.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

Riedel, R.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Ringleb, S.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Ródenas, A.

Rodríguez, E. M.

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Ruske, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Sanseverino, S. R.

Santoni, G. W.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Shen, Y.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Shestakov, A.

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Sohler, W.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

Song, J.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

Sugimoto, N.

Sugioka, K.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

Sun, H.

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Szameit, A.

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Tang, S. H.

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

Teo, E. J.

Tervonen, A.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50(7), 071107 (2011).
[CrossRef]

Thomas, J.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

Thomson, R.

Thomson, R. R.

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Troy, N.

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Tünnermann, A.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Vázquez de Aldana, J. R.

Wang, X.

Wehrspohn, R. B.

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

West, B. R.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50(7), 071107 (2011).
[CrossRef]

Witcher, J. J.

Wofsy, S. C.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Wood, E. C.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Xiong, B.

Xu, J.

Xu, Z.

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Y. Liao, J. Xu, Y. Cheng, Z. Zhou, F. He, H. Sun, J. Song, X. Wang, Z. Xu, K. Sugioka, and K. Midorikawa, “Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser,” Opt. Lett.33(19), 2281–2283 (2008).
[CrossRef] [PubMed]

Yevick, D.

Zahniser, M. S.

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Zeil, P.

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Zhou, Z.

Zhu, S. N.

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

Zhu, Y. Y.

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

Appl. Phys. B (3)

D. Jaque, E. Cantelar, and G. Lifante, “Lattice micro-modifications induced by Zn diffusion in Nd:LiNbO3 channel waveguides probed by Nd3+ confocal micro-luminescence,” Appl. Phys. B88(2), 201–204 (2007).
[CrossRef]

B. H. Lee, E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. Santoni, S. C. Wofsy, and J. W. Munger, “Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared continuous-wave quantum cascade lasers,” Appl. Phys. B102(2), 417–423 (2011).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

M. Heinrich, A. Szameit, F. Dreisow, S. Döring, J. Thomas, S. Nolte, A. Tünnermann, and A. Ancona, “Evanescent coupling in arrays of type II femtosecond laser-written waveguides in bulk x-cut lithium niobate,” Appl. Phys. Lett.93(10), 101111 (2008).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Hu, R. Ricken, W. Sohler, and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching,” IEEE Photon. Technol. Lett.19(6), 417–419 (2007).
[CrossRef]

H. T. Bookey, R. R. Thomson, N. D. Psaila, A. K. Kar, N. Chiodo, R. Osellame, and G. Cerullo, “Femtosecond laser inscription of low insertion loss waveguides in Z-cut lithium niobate,” IEEE Photon. Technol. Lett.19(12), 892–894 (2007).
[CrossRef]

J. Appl. Phys. (3)

H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, “Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3,” J. Appl. Phys.101(11), 113112 (2007).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Lab Chip (1)

Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, and K. Midorikawa, “Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing,” Lab Chip12(4), 746–749 (2012).
[CrossRef] [PubMed]

Laser Photon. Rev. (2)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+and Fe2+ doped mid-IR laser materials,” Laser Photon. Rev.4(1), 21–41 (2010).
[CrossRef]

Laser Photonics Rev (1)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,”Laser Photonics Rev. DOI .
[CrossRef]

Laser Phys. Lett. (1)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett.7(7), 498–504 (2010).
[CrossRef]

Opt. Eng. (1)

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng.50(7), 071107 (2011).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Phys. Status Solidi A (1)

J. Thomas, M. Heinrich, P. Zeil, V. Hilbert, K. Rademaker, R. Riedel, S. Ringleb, C. Dubs, J. Ruske, S. Nolte, and A. Tünnermann, “Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform,” Phys. Status Solidi A208(2), 276–283 (2011).
[CrossRef]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Other (2)

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).

RSoft Design Group, Computer software BandSLOVE, http://www.rsoftdesign.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the depressed cladding waveguides preparation. (b) Optical microscope images of the cross sections of the LiNbO3 depressed cladding waveguides Nos. 1-4. The red dashed circles indicate the locations of the cladding waveguides.

Fig. 2
Fig. 2

The near field modal distributions of LiNbO3 cladding waveguides (a) and (e) No. 1, (b) and (f) No. 2, (c) and (g) No. 3, (d) and (h) No. 4 for the TE (top) and TM (bottom) polarizations at 0.633 μm. The dashed circles indicate the spatial locations of the boundaries of the waveguide structures.

Fig. 3
Fig. 3

The near field modal distributions of LiNbO3 cladding waveguides (a) and (e) No. 1, (b) and (f) No. 2, (c) and (g) No. 3, (d) and (h) No. 4 for the TE (top) and TM (bottom) polarizations at 1.064 μm. The dashed circles indicate the spatial locations of the boundaries of the waveguide structures.

Fig. 4
Fig. 4

2D, 3D measured near field modal distributions of LiNbO3 cladding waveguides: (a) and (e) No. 1, (b) and (f) No. 2, (c) and (g) No. 3, (d) and (h) No. 4 for the TE (top) and TM (bottom) polarizations at 4 μm. The dashed lines in the insets indicate the spatial locations of the boundaries of the waveguides.

Fig. 5
Fig. 5

(a) Reconstructed 2D refractive index profile and (b) 2D, 3D calculated near field modal distributions of the LiNbO3 cladding waveguide No. 1.

Tables (1)

Tables Icon

Table 1 Insertion losses α (dB) of the LiNbO3 cladding waveguides

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn sin 2 θ m 2n

Metrics