Abstract

We report supercontinuum generation in a 16cm long integrated liquid-core optical fiber (LCOF) filled with neat carbon disulfide (CS2). The LCOF was pumped with compact mode-locked fiber lasers operating near 1560nm and 1910nm. The supercontinuum spanned from 1460nm to 2100nm and from 1790nm to 2400nm at 20 dB level for 1560nm and 1910nm pump wavelengths, respectively. The spectral broadening extended mostly to longer wavelengths due to the high Raman contribution to the nonlinear optical response of CS2. The experimental results are in good agreement with numerical simulations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
    [CrossRef]
  2. M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
    [CrossRef] [PubMed]
  3. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt.48(4), B17–B22 (2009).
    [CrossRef] [PubMed]
  4. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
    [CrossRef]
  5. B. S. Ross and C. A. Puliafito, “Erbium-YAG and Holmium-YAG laser ablation of the lens,” Lasers Surg. Med.15(1), 74–82 (1994).
    [CrossRef] [PubMed]
  6. I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer, 2003).
  7. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
    [CrossRef]
  8. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
    [CrossRef] [PubMed]
  9. K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
    [CrossRef] [PubMed]
  10. O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2.,” Opt. Express21(7), 8821–8830 (2013).
    [CrossRef] [PubMed]
  11. Y. Xu, X. Chen, and Y. Zhu, “Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids,” Opt. Express16(12), 9205–9212 (2008).
    [CrossRef] [PubMed]
  12. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express14(15), 6800–6812 (2006).
    [CrossRef] [PubMed]
  13. H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.)121(9), 787–789 (2010).
    [CrossRef]
  14. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express18(6), 6230–6240 (2010).
    [CrossRef] [PubMed]
  15. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express18(24), 25232–25240 (2010).
    [CrossRef] [PubMed]
  16. K. Nakanishi and P. H. Solomon, Infrared Absorption Spectroscopy (Holden Day, 1977).
  17. T. J. Bridges, A. R. Chraplyvy, J. G. Bergman, and R. M. Hart, “Broadband infrared generation in liquid-bromine-core optical fibers,” Opt. Lett.7(11), 566–568 (1982).
    [CrossRef] [PubMed]
  18. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A20(5), 2170–2187 (1979).
    [CrossRef]
  19. A. R. Chraplyvy and T. J. Bridges, “Infrared generation by means of multiple-order stimulated Raman scattering in CCl4- and CBrCl3-filled hollow silica fibers,” Opt. Lett.6(12), 632–633 (1981).
    [CrossRef] [PubMed]
  20. K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett.32(15), 2242–2244 (2007).
    [CrossRef] [PubMed]
  21. A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
    [CrossRef]
  22. G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
    [CrossRef]
  23. B. Kleman, “Near-ultraviolet absorption spectrum of CS2,” Can. J. Phys.41(12), 2034–2063 (1963).
    [CrossRef]
  24. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B69(2), 133–136 (1999).
    [CrossRef]
  25. T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
    [CrossRef]
  26. R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
    [CrossRef]
  27. Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett.22, 1656–1658 (2010).
  28. S. Balac and F. Mahé, “Embedded Runge–Kutta scheme for step-size control in the interaction picture method,” Comput. Phys. Commun.184(4), 1211–1219 (2013).
    [CrossRef]
  29. G. Fibich and A. L. Gaeta, “Critical power for self-focusing in bulk media and in hollow waveguides,” Opt. Lett.25(5), 335–337 (2000).
    [CrossRef] [PubMed]

2013 (2)

2012 (1)

2010 (4)

2009 (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt.48(4), B17–B22 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

K. Kieu and M. Mansuripur, “Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube/polymer composite,” Opt. Lett.32(15), 2242–2244 (2007).
[CrossRef] [PubMed]

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

2004 (1)

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

2003 (1)

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
[CrossRef]

2000 (1)

1999 (2)

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B69(2), 133–136 (1999).
[CrossRef]

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

1998 (1)

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

1994 (1)

B. S. Ross and C. A. Puliafito, “Erbium-YAG and Holmium-YAG laser ablation of the lens,” Lasers Surg. Med.15(1), 74–82 (1994).
[CrossRef] [PubMed]

1992 (1)

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

1982 (1)

1981 (1)

1979 (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A20(5), 2170–2187 (1979).
[CrossRef]

1963 (1)

B. Kleman, “Near-ultraviolet absorption spectrum of CS2,” Can. J. Phys.41(12), 2034–2063 (1963).
[CrossRef]

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A20(5), 2170–2187 (1979).
[CrossRef]

Baba, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Bakhirkin, Y.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

Balac, S.

S. Balac and F. Mahé, “Embedded Runge–Kutta scheme for step-size control in the interaction picture method,” Comput. Phys. Commun.184(4), 1211–1219 (2013).
[CrossRef]

Bergman, J. G.

Bethge, J.

Blanquet, G.

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

Blavier, J.-F.

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

Bredohl, H.

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

Bridges, T. J.

Chang, S.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.)121(9), 787–789 (2010).
[CrossRef]

Chaudhari, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Chen, X.

Chraplyvy, A. R.

Cordeiro, C. M. B.

Cronin-Golomb, M.

Dantus, M.

Domachuk, P.

Dubois, I.

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

Eggleton, B. J.

Falconieri, M.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B69(2), 133–136 (1999).
[CrossRef]

Fang, Q.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett.22, 1656–1658 (2010).

Fibich, G.

Gaeta, A. L.

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

George, A. K.

Giessen, H.

Gissibl, T.

Griebner, U.

Haba, O.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

Harris, D. A.

Hart, R. M.

Herrera, O. D.

Herrmann, J.

Hiroi, K.

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A20(5), 2170–2187 (1979).
[CrossRef]

Huang, D.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.)121(9), 787–789 (2010).
[CrossRef]

Husakou, A.

Inoue, J.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

Ishibashi, K.

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Ishii, H.

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Ishizawa, N.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Jimenez, J. L.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

Kawaguchi, H.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

Kawazoe, T.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

Kieu, K.

Kimura, Y.

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Kito, C.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Kleman, B.

B. Kleman, “Near-ultraviolet absorption spectrum of CS2,” Can. J. Phys.41(12), 2034–2063 (1963).
[CrossRef]

Knight, J. C.

Kolb, C. E.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

Kuhlmey, B. T.

Kuroda, H.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Lewicki, R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

Li, H.

Liao, M.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Lozovoy, V. V.

Mahé, F.

S. Balac and F. Mahé, “Embedded Runge–Kutta scheme for step-size control in the interaction picture method,” Comput. Phys. Commun.184(4), 1211–1219 (2013).
[CrossRef]

Mansuripur, M.

McCurdy, M. R.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

McManus, J. B.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

Mitschke, F.

Miyamoto, K.

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Nelson, D. D.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

Niwano, M.

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Noack, F.

Norwood, R. A.

Ohishi, Y.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Omenetto, F. G.

Peyghambarian, N.

Pricking, S.

Puliafito, C. A.

B. S. Ross and C. A. Puliafito, “Erbium-YAG and Holmium-YAG laser ablation of the lens,” Lasers Surg. Med.15(1), 74–82 (1994).
[CrossRef] [PubMed]

Qin, G.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Ross, B. S.

B. S. Ross and C. A. Puliafito, “Erbium-YAG and Holmium-YAG laser ablation of the lens,” Lasers Surg. Med.15(1), 74–82 (1994).
[CrossRef] [PubMed]

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Sakakibara, S.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Salvetti, G.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B69(2), 133–136 (1999).
[CrossRef]

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
[CrossRef]

Schneebeli, L.

Steinmeyer, G.

Suzuki, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Suzuki, T.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Teipel, J.

Tittel, F. K.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

Turu, M.

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Ueda, M.

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

Vieweg, M.

Walrand, J.

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

Wang, A.

Wolchover, N. A.

Wrzesinski, P. J.

Wu, D. C.

Wysocki, G.

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

Xu, B.

Xu, Y.

Yan, X.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

Yuan, J.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.)121(9), 787–789 (2010).
[CrossRef]

Zahniser, M. S.

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

Zhang, H.

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.)121(9), 787–789 (2010).
[CrossRef]

Zhang, R.

Zhu, Y.

Appl. Opt. (1)

Appl. Phys. B (2)

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jimenez, “A tunable diode laser system for the remote sensing of on-road vehicle emissions,” Appl. Phys. B67(4), 433–441 (1998).
[CrossRef]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B69(2), 133–136 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28μm in a fluoride fiber,” Appl. Phys. Lett.95(16), 161103 (2009).
[CrossRef]

K. Miyamoto, K. Ishibashi, K. Hiroi, Y. Kimura, H. Ishii, and M. Niwano, “Label-free detection and classification of DNA by surface vibration spectroscopy in conjugation with electrophoresis,” Appl. Phys. Lett.86(5), 053902 (2005).
[CrossRef]

Can. J. Phys. (1)

B. Kleman, “Near-ultraviolet absorption spectrum of CS2,” Can. J. Phys.41(12), 2034–2063 (1963).
[CrossRef]

Comput. Phys. Commun. (1)

S. Balac and F. Mahé, “Embedded Runge–Kutta scheme for step-size control in the interaction picture method,” Comput. Phys. Commun.184(4), 1211–1219 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photon. Technol. Lett.22, 1656–1658 (2010).

J Breath Res (1)

M. R. McCurdy, Y. Bakhirkin, G. Wysocki, R. Lewicki, and F. K. Tittel, “Recent advances of laser-spectroscopy-based techniques for applications in breath analysis,” J Breath Res1(1), 014001 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared,” J. Appl. Phys.94(9), 6167–6174 (2003).
[CrossRef]

J. Mol. Spectrosc. (1)

G. Blanquet, J. Walrand, J.-F. Blavier, H. Bredohl, and I. Dubois, “Fourier transform infrared spectrum of CS2: analysis of the 3v3 band,” J. Mol. Spectrosc.152(1), 137–151 (1992).
[CrossRef]

Lasers Surg. Med. (1)

B. S. Ross and C. A. Puliafito, “Erbium-YAG and Holmium-YAG laser ablation of the lens,” Lasers Surg. Med.15(1), 74–82 (1994).
[CrossRef] [PubMed]

Opt. Commun. (2)

T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, and M. Ueda, “Measurement of nonlinear refractive index by time-resolved z-scan technique,” Opt. Commun.160(1-3), 125–129 (1999).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda, “Two- and three-photon absorption in CS2,” Opt. Commun.231(1-6), 431–436 (2004).
[CrossRef]

Opt. Express (7)

R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express14(15), 6800–6812 (2006).
[CrossRef] [PubMed]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express18(6), 6230–6240 (2010).
[CrossRef] [PubMed]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express18(24), 25232–25240 (2010).
[CrossRef] [PubMed]

K. Kieu, L. Schneebeli, R. A. Norwood, and N. Peyghambarian, “Integrated liquid-core optical fibers for ultra-efficient nonlinear liquid photonics,” Opt. Express20(7), 8148–8154 (2012).
[CrossRef] [PubMed]

O. D. Herrera, L. Schneebeli, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Slow light based on stimulated Raman scattering in an integrated liquid-core optical fiber filled with CS2.,” Opt. Express21(7), 8821–8830 (2013).
[CrossRef] [PubMed]

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008).
[CrossRef] [PubMed]

Y. Xu, X. Chen, and Y. Zhu, “Modeling of micro-diameter-scale liquid core optical fiber filled with various liquids,” Opt. Express16(12), 9205–9212 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Optik (Stuttg.) (1)

H. Zhang, S. Chang, J. Yuan, and D. Huang, “Supercontinuum generation in chloroform-filled photonic crystal fibers,” Optik (Stuttg.)121(9), 787–789 (2010).
[CrossRef]

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A20(5), 2170–2187 (1979).
[CrossRef]

Other (2)

K. Nakanishi and P. H. Solomon, Infrared Absorption Spectroscopy (Holden Day, 1977).

I. T. Sorokina and K. L. Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) – Schematic diagram of the experimental setup. (b) –Transmission spectrum of neat liquid CS2 measured using a spectrophotometer with a 1cm long cuvette.

Fig. 2
Fig. 2

Normalized pump laser spectrum and supercontinuum spectra at the output of the LCOF using 1560nm femtosecond laser pumping at 8mW and 50mW average powers. Spectra are separated by 10 dB for clarity.

Fig. 3
Fig. 3

Photograph of the bubbles rising up from the splice in the cuvette filled with CS2 when the pump power of the femtosecond fiber laser at 1560nm was > 50mW. Green light generation (green dot) and noticeable acoustic signal were also present during the bubble formation process.

Fig. 4
Fig. 4

Normalized pump laser spectrum and the supercontinuum spectra at the output of the LCOF using 1910nm femtosecond laser pumping at 16mW and 102mW average powers. Spectra are separated by 10dB for clarity.

Fig. 5
Fig. 5

Simulated spectra of pump and supercontinuum generation in 16cm of LCOF using 1560nm pumping (a) and 1910nm pumping (b) at different average pump powers. The fiber parameters and pump pulse characteristics used in the calculations were similar to the experimental conditions. Spectra are normalized and separated by 10dB for clarity.

Fig. 6
Fig. 6

Simulated spectra of the pump and supercontinuum generation in 16cm of LCOF using 1910nm pumping at average powers of 1W and 4W. Spectra are normalized and separated by 10dB for clarity.

Tables (1)

Tables Icon

Table 1 Calculated effective area and dispersion values used in our simulation for 1560nm and 1910nm.

Metrics