Abstract

Ultraviolet (UV)-cured organic–inorganic hybrid materials with low refractive index (<1.40) were prepared for multilayer film applications. The hybrid materials comprised hollow silica nanoparticles modified with trialkoxysilane-derived reactive coupling agents. The average number of modifier molecules on the surface of a hollow silica nanoparticle was 0.47 molecule/nm2. The modified hollow silica nanoparticles were homogeneously mixed with UV-curable resins, which induced radical photopolymerization. A UV-cured film containing 60 wt% hollow silica nanoparticles showed a transmittance of >99% in the visible and near-infrared regions and a low refractive index of 1.372 at 633 nm. A TiO2-containing UV-cured hybrid film with high refractive index was easily coated on the UV-cured low-refractive-index film.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007).
    [CrossRef]
  2. Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
    [CrossRef]
  3. Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
    [CrossRef]
  4. M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
    [CrossRef]
  5. S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
    [CrossRef]
  6. S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
    [CrossRef]
  7. B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
    [CrossRef]
  8. J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
    [CrossRef]
  9. T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
    [CrossRef]
  10. J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003).
    [CrossRef]
  11. A. Suzuki and S. Ando, “Preparation and optical properties of fluorinated polyimides/MgF2 nanohybrid thin films exhibiting high transparency and low refractive indices,” Polymer Preprints, Japan.57, 2 (2008).
  12. Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
    [CrossRef] [PubMed]
  13. P. A. Barnes and D. P. Schinke, “Refractive index of a native oxide anodically grown on GaAs,” Appl. Phys. Lett.30(1), 26–28 (1977).
    [CrossRef]
  14. J. D. Miller and H. Ishida, “Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes,” Surf. Sci.148(2-3), 601–622 (1984).
    [CrossRef]
  15. I. D. Sideridou and M. M. Karabela, “Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites,” Dent. Mater.25(11), 1315–1324 (2009).
    [CrossRef] [PubMed]

2012 (1)

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

2011 (2)

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

2010 (2)

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

2009 (1)

I. D. Sideridou and M. M. Karabela, “Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites,” Dent. Mater.25(11), 1315–1324 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Suzuki and S. Ando, “Preparation and optical properties of fluorinated polyimides/MgF2 nanohybrid thin films exhibiting high transparency and low refractive indices,” Polymer Preprints, Japan.57, 2 (2008).

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

2007 (2)

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007).
[CrossRef]

2003 (1)

J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003).
[CrossRef]

2002 (1)

J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
[CrossRef]

1984 (1)

J. D. Miller and H. Ishida, “Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes,” Surf. Sci.148(2-3), 601–622 (1984).
[CrossRef]

1977 (1)

P. A. Barnes and D. P. Schinke, “Refractive index of a native oxide anodically grown on GaAs,” Appl. Phys. Lett.30(1), 26–28 (1977).
[CrossRef]

Adschiri, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

Ando, S.

A. Suzuki and S. Ando, “Preparation and optical properties of fluorinated polyimides/MgF2 nanohybrid thin films exhibiting high transparency and low refractive indices,” Polymer Preprints, Japan.57, 2 (2008).

Ando, T.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

Bae, B. S.

J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003).
[CrossRef]

Barnes, P. A.

P. A. Barnes and D. P. Schinke, “Refractive index of a native oxide anodically grown on GaAs,” Appl. Phys. Lett.30(1), 26–28 (1977).
[CrossRef]

Cai, B.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

Campoy-Quiles, M.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Caseri, W. R.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Choi, J. Y.

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Cohen, R. E.

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

Du, Y.

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

Elim, H. I.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

Ferenczi, T. A. M.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Friend, R. H.

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

Garriga, M.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Goh, C.

C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007).
[CrossRef]

Han, J. K.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Han, Y. K.

J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
[CrossRef]

Ho, P. K. H.

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

Inoue, A.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

Ishida, H.

J. D. Miller and H. Ishida, “Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes,” Surf. Sci.148(2-3), 601–622 (1984).
[CrossRef]

Kabra, D.

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

Kaino, T.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

Karabela, M. M.

I. D. Sideridou and M. M. Karabela, “Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites,” Dent. Mater.25(11), 1315–1324 (2009).
[CrossRef] [PubMed]

Kim, E. R.

J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
[CrossRef]

Kim, J. Y.

J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
[CrossRef]

Kim, W. S.

J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003).
[CrossRef]

Ko, Y. S.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Komikado, T.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

Kubo, S.

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

Kudo, S.

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

Kwon, Y. K.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Lacharmoise, P.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Lee, E. H.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Lee, H. S.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Lee, J. M.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Lee, S.

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Luna, L. E.

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

Masuda, K.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

McGehee, M. D.

C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007).
[CrossRef]

Miller, J. D.

J. D. Miller and H. Ishida, “Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes,” Surf. Sci.148(2-3), 601–622 (1984).
[CrossRef]

Nagase, K.

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

Nakagawa, M.

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

Oh, J. H.

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

Paik, U.

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Park, J. U.

J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003).
[CrossRef]

Rubner, M. F.

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

Russo, M.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Schinke, D. P.

P. A. Barnes and D. P. Schinke, “Refractive index of a native oxide anodically grown on GaAs,” Appl. Phys. Lett.30(1), 26–28 (1977).
[CrossRef]

Scully, S. R.

C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007).
[CrossRef]

Shin, H. J.

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Sideridou, I. D.

I. D. Sideridou and M. M. Karabela, “Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites,” Dent. Mater.25(11), 1315–1324 (2009).
[CrossRef] [PubMed]

Stingelin, N.

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Sugihara, O.

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

Suh, K. S.

J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
[CrossRef]

Suzuki, A.

A. Suzuki and S. Ando, “Preparation and optical properties of fluorinated polyimides/MgF2 nanohybrid thin films exhibiting high transparency and low refractive indices,” Polymer Preprints, Japan.57, 2 (2008).

Tan, W. S.

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

Umegaki, S.

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

Vaynzof, Y.

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

Wee, A. T.-S.

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

Yi, D. K.

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Yoon, S. M.

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Zhao, L.

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

ACS Nano (1)

Y. Du, L. E. Luna, W. S. Tan, M. F. Rubner, and R. E. Cohen, “Hollow silica nanoparticles in UV-visible antireflection coatings for poly(methyl methacrylate) substrates,” ACS Nano4(7), 4308–4316 (2010).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

B. Cai, O. Sugihara, H. I. Elim, T. Adschiri, and T. Kaino, “A novel preparation of high-refractive-index and highly transparent polymer nanohybrid composites,” Appl. Phys. Express4(9), 092601 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Vaynzof, D. Kabra, L. Zhao, P. K. H. Ho, A. T.-S. Wee, and R. H. Friend, “Improved photoinduced charge carriers separation in organic-inorganic hybrid photovoltaic devices,” Appl. Phys. Lett.97(3), 033309 (2010).
[CrossRef]

P. A. Barnes and D. P. Schinke, “Refractive index of a native oxide anodically grown on GaAs,” Appl. Phys. Lett.30(1), 26–28 (1977).
[CrossRef]

Curr. Appl. Phys. (1)

J. Y. Kim, Y. K. Han, E. R. Kim, and K. S. Suh, “Two-layer hybrid anti-reflection film prepared on the plastic substrates,” Curr. Appl. Phys.2(2), 123–127 (2002).
[CrossRef]

Dent. Mater. (1)

I. D. Sideridou and M. M. Karabela, “Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites,” Dent. Mater.25(11), 1315–1324 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

C. Goh, S. R. Scully, and M. D. McGehee, “Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells,” J. Appl. Phys.101(11), 114503 (2007).
[CrossRef]

J. Mater. Chem. (3)

S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi, and U. Paik, “Refractive index engineering of transparent ZrO2–polydimethylsiloxane nanocomposites,” J. Mater. Chem.18(15), 1751–1755 (2008).
[CrossRef]

Y. K. Kwon, J. K. Han, J. M. Lee, Y. S. Ko, J. H. Oh, H. S. Lee, and E. H. Lee, “Organic–inorganic hybrid materials for flexible optical waveguide applications,” J. Mater. Chem.18(5), 579–585 (2008).
[CrossRef]

J. U. Park, W. S. Kim, and B. S. Bae, “Photoinduced low refractive index in a photosensitive organic–inorganic hybrid material,” J. Mater. Chem.13(4), 738–741 (2003).
[CrossRef]

J. Polym. Sci., Part B: Polym. Phys. (1)

M. Russo, M. Campoy-Quiles, P. Lacharmoise, T. A. M. Ferenczi, M. Garriga, W. R. Caseri, and N. Stingelin, “One-pot synthesis of polymer/inorganic hybrids: toward readily accessible, low-loss, and highly tunable refractive index materials and patterns,” J. Polym. Sci., Part B: Polym. Phys.50(1), 65–74 (2012).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Kudo, K. Nagase, S. Kubo, O. Sugihara, and M. Nakagawa, “Optically transparent and refractive index-tunable ZrO2/photopolymer composites designed for ultraviolet nanoimprinting,” Jpn. J. Appl. Phys.50(6), 06GK12 (2011).
[CrossRef]

Polymer Preprints, Japan. (1)

A. Suzuki and S. Ando, “Preparation and optical properties of fluorinated polyimides/MgF2 nanohybrid thin films exhibiting high transparency and low refractive indices,” Polymer Preprints, Japan.57, 2 (2008).

Surf. Sci. (1)

J. D. Miller and H. Ishida, “Quantitative monomolecular coverage of inorganic particulates by methacryl-functional silanes,” Surf. Sci.148(2-3), 601–622 (1984).
[CrossRef]

Thin Solid Films (1)

T. Komikado, A. Inoue, K. Masuda, T. Ando, and S. Umegaki, “Multi-layered mirrors fabricated by spin-coating organic polymers,” Thin Solid Films515(7-8), 3887–3892 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustrations of (a) surface modification of hollow silica nanoparticles, and (b) preparation of hybrid materials. In (a), the process involves (i) adding silane coupling agent (RSi(OMe)3) and heating under reflux for 4 h, (ii) dispersing modified nanoparticles in 1-methoxy-2-propanol using a centrifugal separator, and (iii) adding UV-curable resin. In (b), the process involves (i) coating the substrate with UV-curable hybrid resin, (ii) annealing at 80 °C for 2 min, and (iii) exposure to UV light (100 mW/cm2 monitored at 365 nm) for 10 s.

Fig. 2
Fig. 2

Size distribution of hollow silica nanoparticles (a) unmodified and modified with (b) 3-trimethoxysilyl propyl acrylate, A, and (c) 3-triethoxysilyl propyl methacrylate, M. Inset: TEM image of unmodified hollow silica nanoparticles.

Fig. 3
Fig. 3

TGA curves of unmodified hollow silica nanoparticles, NP, and modified hollow silica nanoparticles NP(A) and NP(M) measured at a heating rate of 10 °C/min under air atmosphere.

Fig. 4
Fig. 4

FTIR spectra of hollow silica nanoparticles (NP), 3-trimethoxysilyl propyl acrylate (A), and modified hollow silica nanoparticles (NP(A)) in KBr pellets.

Fig. 5
Fig. 5

Refractive indices (TE mode, 633 nm) of AC-NP(A), AC-NP(M), MC-NP(A), and MC-NP(M) hybrid thin films (thickness: 1–2 μm) as a function of content of modified nanoparticles.

Fig. 6
Fig. 6

Transmittance spectra of AC-NP(A), AC-NP(M), MC-NP(A), and MC-NP(M) hybrid thin films with a nanoparticle concentration of 60 wt%.

Fig. 7
Fig. 7

Photographs of a UV-curable TiO2-containing resin used to prepare a high-refractive-index layer after spin-coating onto a low-refractive-index layer of (a) perfluorinated polymer, and (b) UV-cured MC-NP(A).

Fig. 8
Fig. 8

Cross-sectional SEM image of a double-layer film composed of a TiO2-containing high-refractive-index layer and low-refractive-index MC-NP(A) layer.

Tables (2)

Tables Icon

Table 1 UV-cured hybrid thin films prepared from four combinations of monomers in UV-curable resins with silane coupling agents for surface modification of hollow silica nanoparticles

Tables Icon

Table 2 Carbon component ratio and weight fraction of surface modifiers determined by elemental analysis

Metrics