Abstract

One-dimensional noncentrosymmetric KPSe6 is an excellent mid-infrared (mid-IR) nonlinear optical (NLO) material possessing reversible phase-change behavior. In this special issue we present a broadband NLO study on its crystalline and glassy phases as well as fundamental material characterizations. The compound has a bandgap of ∼ 2.1 eV and exhibits intrinsic second harmonic generation even in the glassy phase. The crystalline compound is type-I phase-matchable and shows strong second- and third-order NLO responses over a broad wavelength range (1.0 – 3.0 μm) with excellent optical transparency. Based on the measured NLO coefficients χ(2) ≃ 142.8 pm/V and χ(3) ≃ 4.7 × 105 pm2/V2, we propose that KPSe6 can be utilized for numerous mid-IR NLO applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
    [CrossRef] [PubMed]
  2. G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
    [CrossRef]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
    [CrossRef] [PubMed]
  4. M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
    [CrossRef]
  5. D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
    [CrossRef] [PubMed]
  6. V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol.77, 6–17 (2010).
    [CrossRef]
  7. J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
    [CrossRef]
  8. C. Conti, A.J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: Toward metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011).
    [CrossRef]
  9. J. Parravicini, C. Conti, A.J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
    [CrossRef] [PubMed]
  10. J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
    [CrossRef]
  11. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
    [CrossRef]
  12. G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
    [CrossRef]
  13. K. Kato, “Second-harmonic generation and sum-frequency generation in ZnGeP2,” Appl. Opt.36, 2506–2510 (1997).
    [CrossRef] [PubMed]
  14. W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
    [CrossRef]
  15. J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
    [CrossRef] [PubMed]
  16. J. I. Jang, I. Chung, J. B. Ketterson, and M. G. Kanatzidis, ” “Nonlinear optical chalcogenide fibers and films of APSe6(A = K, Rb),” in New Developments in Photon and Materials Research, J. I. Jang, eds. (NOVA Scientific Publishers, 2013), pp. 195–218 and references therein.
  17. M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol.3, 142–148 (1997).
    [CrossRef]
  18. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, 2007).
  19. I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
    [CrossRef]
  20. I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
    [CrossRef]
  21. T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
    [CrossRef] [PubMed]
  22. C. D. Morris, C. D. Malliakas, and M. G. Kanatzidis, “Germanium selenophosphates: The incommensurately modulated 1∞[Ge4−xPxSe124−]and the molecular [Ge2P2Se14]6−,” Inorg. Chem.50, 10241–10248 (2011).
    [CrossRef] [PubMed]
  23. S. Banerjee, C. D. Malliakas, and M. G. Kanatzidis, “New layered tin(2) thiophosphates ASnPS4(A = K, Rb, Cs): Synthesis, structure, glass formation, and the modulated CsSnPS4,” 51, 11562–11573 (2012).
  24. I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
    [CrossRef] [PubMed]
  25. J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
    [CrossRef]
  26. T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
    [CrossRef]
  27. B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
    [CrossRef]
  28. C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
    [CrossRef]
  29. I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
    [CrossRef] [PubMed]
  30. S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys.39, 3798–3813 (1968).
    [CrossRef]
  31. G. C. Bhar, “Silver thiogallate and related diamond-like semiconductors for nonlinear-optical laser devices,” Jpn. J. Appl. Phys. Part I, Supplement32, 653–659 (1993).
  32. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st edition (Springer, 2005).
  33. J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
    [CrossRef] [PubMed]
  34. C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
    [CrossRef] [PubMed]
  35. See, for example, http://www.uqgoptics.com/materials_commercial_corning_pyrexBorosilicate.aspx .
  36. I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
    [CrossRef]
  37. http://marzenell.de/Research/Z-Scan/z-scan.html .
  38. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
    [CrossRef]

2013

2012

J. Parravicini, C. Conti, A.J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

S. Banerjee, C. D. Malliakas, and M. G. Kanatzidis, “New layered tin(2) thiophosphates ASnPS4(A = K, Rb, Cs): Synthesis, structure, glass formation, and the modulated CsSnPS4,” 51, 11562–11573 (2012).

C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
[CrossRef]

2011

C. D. Morris, C. D. Malliakas, and M. G. Kanatzidis, “Germanium selenophosphates: The incommensurately modulated 1∞[Ge4−xPxSe124−]and the molecular [Ge2P2Se14]6−,” Inorg. Chem.50, 10241–10248 (2011).
[CrossRef] [PubMed]

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

C. Conti, A.J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: Toward metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011).
[CrossRef]

2010

V. A. Serebryakov, E. V. Boiko, N. N. Petrishchev, and A. V. Yan, “Medical applications of mid-IR lasers. Problems and prospects,” J. Opt. Technol.77, 6–17 (2010).
[CrossRef]

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

2009

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

2008

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

2007

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

2006

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

2004

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

2003

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

2002

W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
[CrossRef]

2000

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
[CrossRef]

1999

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

1998

B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
[CrossRef]

1997

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol.3, 142–148 (1997).
[CrossRef]

K. Kato, “Second-harmonic generation and sum-frequency generation in ZnGeP2,” Appl. Opt.36, 2506–2510 (1997).
[CrossRef] [PubMed]

1995

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

1993

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

G. C. Bhar, “Silver thiogallate and related diamond-like semiconductors for nonlinear-optical laser devices,” Jpn. J. Appl. Phys. Part I, Supplement32, 653–659 (1993).

1990

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

1968

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys.39, 3798–3813 (1968).
[CrossRef]

Ackerman, D. A.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
[CrossRef]

Agranat, A.J.

J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

J. Parravicini, C. Conti, A.J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

C. Conti, A.J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: Toward metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011).
[CrossRef]

Andreev, Y. N.

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

Ariunbold, G. O.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Asobe, M.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol.3, 142–148 (1997).
[CrossRef]

Banerjee, S.

S. Banerjee, C. D. Malliakas, and M. G. Kanatzidis, “New layered tin(2) thiophosphates ASnPS4(A = K, Rb, Cs): Synthesis, structure, glass formation, and the modulated CsSnPS4,” 51, 11562–11573 (2012).

Bera, T. K.

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

Bhar, G. C.

G. C. Bhar, “Silver thiogallate and related diamond-like semiconductors for nonlinear-optical laser devices,” Jpn. J. Appl. Phys. Part I, Supplement32, 653–659 (1993).

Bhar, G.C.

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

Bischoff, C.

C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
[CrossRef]

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Boiko, E. V.

Borwick, R.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

Canlas, C. G.

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

Chatterjee, U.

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

Chung, I.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

J. I. Jang, I. Chung, J. B. Ketterson, and M. G. Kanatzidis, ” “Nonlinear optical chalcogenide fibers and films of APSe6(A = K, Rb),” in New Developments in Photon and Materials Research, J. I. Jang, eds. (NOVA Scientific Publishers, 2013), pp. 195–218 and references therein.

Clark, D. J.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

Conti, C.

J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

J. Parravicini, C. Conti, A.J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

C. Conti, A.J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: Toward metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011).
[CrossRef]

Cooper, S. L.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
[CrossRef]

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Cunningham, P.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

Das, S.

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

Datta, P. K.

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

DeGroot, D. C.

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

DelRe, E.

J. Parravicini, C. Conti, A.J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

C. Conti, A.J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: Toward metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011).
[CrossRef]

Ding, Y. J.

W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
[CrossRef]

Do, J.

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

Dogariu, A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Dunayevskiy, I. G.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, 2007).

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Ewbank, M. D.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

Fernelius, N.

W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
[CrossRef]

Freeman, A. J.

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

Frumar, M.

B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
[CrossRef]

Frumarová, B.

B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
[CrossRef]

Gave, M. A.

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

Go, R.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Harrison, C. M.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

Haynes, M.

C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
[CrossRef]

He, J.

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

Hogan, T.

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

Hsu, K. F.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

Huang, S.

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

Jang, J. I.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

J. I. Jang, I. Chung, J. B. Ketterson, and M. G. Kanatzidis, ” “Nonlinear optical chalcogenide fibers and films of APSe6(A = K, Rb),” in New Developments in Photon and Materials Research, J. I. Jang, eds. (NOVA Scientific Publishers, 2013), pp. 195–218 and references therein.

Jen, A.K.Y.

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

Kanatzidis, M. G.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

S. Banerjee, C. D. Malliakas, and M. G. Kanatzidis, “New layered tin(2) thiophosphates ASnPS4(A = K, Rb, Cs): Synthesis, structure, glass formation, and the modulated CsSnPS4,” 51, 11562–11573 (2012).

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

C. D. Morris, C. D. Malliakas, and M. G. Kanatzidis, “Germanium selenophosphates: The incommensurately modulated 1∞[Ge4−xPxSe124−]and the molecular [Ge2P2Se14]6−,” Inorg. Chem.50, 10241–10248 (2011).
[CrossRef] [PubMed]

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

J. I. Jang, I. Chung, J. B. Ketterson, and M. G. Kanatzidis, ” “Nonlinear optical chalcogenide fibers and films of APSe6(A = K, Rb),” in New Developments in Photon and Materials Research, J. I. Jang, eds. (NOVA Scientific Publishers, 2013), pp. 195–218 and references therein.

Kannewurf, C. R.

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

Kato, K.

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Ketterson, J. B.

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

J. I. Jang, I. Chung, J. B. Ketterson, and M. G. Kanatzidis, ” “Nonlinear optical chalcogenide fibers and films of APSe6(A = K, Rb),” in New Developments in Photon and Materials Research, J. I. Jang, eds. (NOVA Scientific Publishers, 2013), pp. 195–218 and references therein.

Kim, M. -G.

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

Kurtz, S. K.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys.39, 3798–3813 (1968).
[CrossRef]

Liao, J. H.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

Luo, J.D.

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

Malliakas, C. D.

S. Banerjee, C. D. Malliakas, and M. G. Kanatzidis, “New layered tin(2) thiophosphates ASnPS4(A = K, Rb, Cs): Synthesis, structure, glass formation, and the modulated CsSnPS4,” 51, 11562–11573 (2012).

C. D. Morris, C. D. Malliakas, and M. G. Kanatzidis, “Germanium selenophosphates: The incommensurately modulated 1∞[Ge4−xPxSe124−]and the molecular [Ge2P2Se14]6−,” Inorg. Chem.50, 10241–10248 (2011).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Marking, G. M.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

Martin, S. W.

C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
[CrossRef]

Matsushita, Y.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

McCarthy, T. J.

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

Morris, C. D.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

C. D. Morris, C. D. Malliakas, and M. G. Kanatzidis, “Germanium selenophosphates: The incommensurately modulated 1∞[Ge4−xPxSe124−]and the molecular [Ge2P2Se14]6−,” Inorg. Chem.50, 10241–10248 (2011).
[CrossRef] [PubMed]

Mu, X.

W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
[CrossRef]

Murawski, R. K.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Nemec, P.

B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Ngeyi, S. P.

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st edition (Springer, 2005).

Oswald, J.

B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
[CrossRef]

Park, S.

J. I. Jang, S. Park, C. M. Harrison, D. J. Clark, C. D. Morris, I. Chung, and M. G. Kanatzidis, “K4GeP4Se12: A case for phase-change nonlinear optical chalcogenide,” Opt. Lett.38, 1316–1318 (2013).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

Parravicini, J.

J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

J. Parravicini, C. Conti, A.J. Agranat, and E. DelRe, “Programming scale-free optics in disordered ferroelectrics,” Opt. Lett.37, 2355–2357 (2012).
[CrossRef] [PubMed]

Patel, C. K. N.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

Perry, T. T.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys.39, 3798–3813 (1968).
[CrossRef]

Pestov, D.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Petrishchev, N. N.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Polishak, B.M.

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Prucnal, P. R.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
[CrossRef]

Pushkarsky, M.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Rosker, M. J.

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Sautenkov, V. A.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Schuller, K.

C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
[CrossRef]

Scully, M. O.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

Serebryakov, V. A.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
[CrossRef]

Shi, Z.W.

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

Sokolov, A. V.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Song, J. -H.

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

Song, J.-H.

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

Thomas, G. A.

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
[CrossRef]

Tsekoun, A.

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Wang, X.

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Wei, T.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Weliky, D. P.

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Yan, A. V.

Zakery, A.

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, 2007).

Zhou, X.H.

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed.

I. Chung, M. -G. Kim, J. I. Jang, J. He, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical chalcogenide thin films of APSe6(A = K, Rb) form spin-coating,” Angew. Chem. Int. Ed.50, 10867–10870 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

G.C. Bhar, S. Das, U. Chatterjee, P. K. Datta, and Y. N. Andreev, “Noncritical second harmonic generation of CO2 laser radiation in mixed chalcopyrite crystal,” Appl. Phys. Lett.63, 1316–1318 (1993).
[CrossRef]

J. Parravicini, A.J. Agranat, C. Conti, and E. DelRe, “Equalizing disordered ferroelectrics for diffraction cancellation,” Appl. Phys. Lett.101, 111104 (2012).
[CrossRef]

W. Shi, Y. J. Ding, X. Mu, and N. Fernelius, “Tunable and coherent nanosecond radiation in the range of 2.7 – 28.7 μm based on difference-frequency generation in gallium selenide,” Appl. Phys. Lett.80, 3889–3891 (2002).
[CrossRef]

Chem. Commun.

I. Chung, J. I. Jang, M. A. Gave, D. P. Weliky, and M. G. Kanatzidis, “Low valent phosphorus in the molecular anions [P5Se12]5−and β-[P6Se12]4−: phase change behavior and near infrared second harmonic generation,” Chem. Commun.47, 4998–5000 (2007).
[CrossRef]

Chem. Mater.

T. J. McCarthy, S. P. Ngeyi, J. H. Liao, D. C. DeGroot, T. Hogan, C. R. Kannewurf, and M. G. Kanatzidis, “Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13,” Chem. Mater.5331–340 (1993).
[CrossRef]

J.D. Luo, S. Huang, Z.W. Shi, B.M. Polishak, X.H. Zhou, and A.K.Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater.23, 544–553 (2011).
[CrossRef]

IEEE J. Quantum Electron.

M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron.26, 760–769 (1990).
[CrossRef]

Inorg. Chem.

I. Chung, J. Do, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “APSe6(A = K, Rb, and Cs): Polymeric selenophosphates with reversible phase-change properties,” Inorg. Chem.43, 2762–2764 (2004).
[CrossRef] [PubMed]

C. D. Morris, C. D. Malliakas, and M. G. Kanatzidis, “Germanium selenophosphates: The incommensurately modulated 1∞[Ge4−xPxSe124−]and the molecular [Ge2P2Se14]6−,” Inorg. Chem.50, 10241–10248 (2011).
[CrossRef] [PubMed]

J. Am. Chem. Soc.

T. K. Bera, J. I. Jang, J.-H. Song, C. D. Malliakas, A. J. Freeman, J. B. Ketterson, and M. G. Kanatzidis, “Soluble semiconductors AAsSe2(A = Li, Na) with a direct-band-gap and strong second harmonic generation: A combined theoretical and experimental study,” J. Am. Chem. Soc.132, 3484–3495 (2010).
[CrossRef] [PubMed]

J. H. Liao, G. M. Marking, K. F. Hsu, Y. Matsushita, M. D. Ewbank, R. Borwick, P. Cunningham, M. J. Rosker, and M. G. Kanatzidis, “α- and β-A2Hg3M2S8(A = K, Rb; M = Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response,” J. Am. Chem. Soc.125, 9484–9493 (2003).
[CrossRef] [PubMed]

I. Chung, C. D. Malliakas, J. I. Jang, C. G. Canlas, D. P. Weliky, and M. G. Kanatzidis, “Helical polymer 1∞[P2Se62−]: Strong second harmonic generation response and phase-change properties of its K and Rb Salts,” J. Am. Chem. Soc.129, 14996–15006 (2007).
[CrossRef] [PubMed]

C. D. Morris, I. Chung, S. Park, C. M. Harrison, D. J. Clark, J. I. Jang, and M. G. Kanatzidis, “Molecular germanium selenophosphate salts: Phase-change properties and strong second harmonic generation,” J. Am. Chem. Soc.134, 20733–20744 (2012).
[CrossRef] [PubMed]

I. Chung, J. I. Jang, C. D. Malliakas, J. B. Ketterson, and M. G. Kanatzidis, “Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials,” J. Am. Chem. Soc.132, 384–389 (2010).
[CrossRef]

J. Appl. Phys.

S. K. Kurtz and T. T. Perry, “A powder technique for the evaluation of nonlinear optical materials,” J. Appl. Phys.39, 3798–3813 (1968).
[CrossRef]

J. Non-Cryst. Solids

C. Bischoff, K. Schuller, M. Haynes, and S. W. Martin, “Structural investigations of y Na2S+(1 − y)PS5/2glasses using Raman and infrared spectroscopies,” J. Non-Cryst. Solids358, 3216–3222 (2012).
[CrossRef]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids184, 44–50 (1995).
[CrossRef]

J. Opt. Technol.

Jpn. J. Appl. Phys. Part I, Supplement

G. C. Bhar, “Silver thiogallate and related diamond-like semiconductors for nonlinear-optical laser devices,” Jpn. J. Appl. Phys. Part I, Supplement32, 653–659 (1993).

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Fiber Technol.

M. Asobe, “Nonlinear optical properties of chalcogenide glass fibers and their application to all-optical switching,” Opt. Fiber Technol.3, 142–148 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. A

C. Conti, A.J. Agranat, and E. DelRe, “Subwavelength optical spatial solitons and three-dimensional localization in disordered ferroelectrics: Toward metamaterials of nonlinear origin,” Phys. Rev. A84, 043809 (2011).
[CrossRef]

Phys. Rev. B

J. -H. Song, A. J. Freeman, I. Chung, T. K. Bera, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,” Phys. Rev. B79, 245203 (2009).
[CrossRef]

Phys. Today

G. A. Thomas, D. A. Ackerman, P. R. Prucnal, and S. L. Cooper, “Physics in the whirlwind of optical communications,” Phys. Today53, 30–36 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. Pushkarsky, A. Tsekoun, I. G. Dunayevskiy, R. Go, and C. K. N. Patel, “Sub-parts-per-billion level dectection of NO2using room-temperature quantum cascade lasers,” Proc. Natl. Acad. Sci. USA103, 10846–10849 (2006).
[CrossRef]

D. Pestov, X. Wang, G. O. Ariunbold, R. K. Murawski, V. A. Sautenkov, A. Dogariu, A. V. Sokolov, and M. O. Scully, “Single-shot detection of bacterial endospores via coherent Raman spectroscopy,” Proc. Natl. Acad. Sci. USA105, 422–427 (2008).
[CrossRef] [PubMed]

Science

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science286, 1523–1528 (1999).
[CrossRef] [PubMed]

Semiconductors

B. Frumarová, P. Nĕmec, M. Frumar, and J. Oswald, “Synthesis and properties of Ge-Sn-S: NdCl3 glasses,” Semiconductors32, 812–816 (1998).
[CrossRef]

Other

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey, 1st edition (Springer, 2005).

A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, 2007).

J. I. Jang, I. Chung, J. B. Ketterson, and M. G. Kanatzidis, ” “Nonlinear optical chalcogenide fibers and films of APSe6(A = K, Rb),” in New Developments in Photon and Materials Research, J. I. Jang, eds. (NOVA Scientific Publishers, 2013), pp. 195–218 and references therein.

S. Banerjee, C. D. Malliakas, and M. G. Kanatzidis, “New layered tin(2) thiophosphates ASnPS4(A = K, Rb, Cs): Synthesis, structure, glass formation, and the modulated CsSnPS4,” 51, 11562–11573 (2012).

See, for example, http://www.uqgoptics.com/materials_commercial_corning_pyrexBorosilicate.aspx .

http://marzenell.de/Research/Z-Scan/z-scan.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Crystal structure of KPSe6 viewed down the b-axis.

Fig. 2
Fig. 2

(a) Experimental PXRD patterns of crystalline KPSe6 (blue) and glassy KPSe6 (red) compared to the simulated pattern (black). Each trace is vertically translated for clarity. (b) Solid-state UV-VIS absorption spectra of crystalline (blue) and amorphous (red) KPSe6 superimposed by the theoretical fits (solid lines).

Fig. 3
Fig. 3

(a) DTA of crystalline KPSe6 from 50 C to 400 C, displaying three cycles to demonstrate its reversible crystal-glass phase-change properties; first cycle (black), second cycle (red), and third cycle (blue). (b) Raman spectra of crystalline (blue) and glassy (red) KPSe6. Each trace is vertically translated for clarity.

Fig. 4
Fig. 4

Wavelength-dependent (a) SHG from AgGaS2 and (b) THG from AgGaSe2.

Fig. 5
Fig. 5

(a) Non-phase-matching SHG from glassy KPSe6 based on particle-size dependence at λ = 1.8 μm. Broadband (b) SHG counts and (c) THG counts from glassy KPSe6 (red) and AgGaSe2 (circles), respectively, plotted on a semi-log scale.

Fig. 6
Fig. 6

(a) Phase-matching SHG from crystalline KPSe6 based on particle-size dependence at λ = 1.8 μm. (b) Broadband SHG counts from crystalline KPSe6 (blue) and AgGaS2 (black) at d = 125 – 150 μm. (c) Broadband THG counts from crystalline KPSe6 (blue) and AgGaSe2 (circles) at d = 20 – 32 μm.

Fig. 7
Fig. 7

(a) SHG spectra and (b) THG spectra at λ = 1.55 μm for several incident pulse energies (10 – 30 μJ), respectively. (c) Corresponding power dependence of SHG (dots) and THG (circles) superimposed by theoretical square and cubic fits (solid lines).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( 2 ) = χ ref ( 2 ) ( I S H G / I S H G ref ) 1 / 2 142.8 ± 10.5 pm / V ,
χ ( 3 ) = χ ref ( 3 ) ( I T H G / I T H G ref ) 1 / 2 ( l c ref / l c ) χ ref ( 3 ) ( I T H G / I T H G ref ) 1 / 2 ,

Metrics