Abstract

The current fluoroindate glass optical fiber loss is dominated by extrinsic absorption and scattering loss. Attempts were made to reduce fluoroindate glass fiber loss by optimizing glass melting conditions, preform extrusion process and fiber drawing conditions. Our results show that fluorination of the glass batches (with 99.99% InF3) at 450 °C by addition of ammonium bifluoride reduced un-dissolved particles (potential scattering losses) in the glass. Glass flow analysis was carried out to provide insights into the glass temperature-viscosity behavior and the relationship between preform surface roughness and extrusion temperature, which enabled fabrication of preforms with low surface roughnesses and eventually reduced the fiber scattering loss. Fiber surface crystallization was reduced via conducting chemical etching and polishing (with colloidal silica) on both glass billets and preforms, extending the heating zone for fiber drawing, and applying additional weight at the bottom of preforms. As a consequence, the fiber surface roughness decreased, resulting in decreased fiber scattering loss and enhanced fiber strength.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
    [CrossRef]
  2. M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
    [CrossRef]
  3. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
    [CrossRef]
  4. T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys.25(Part 2, No. 6), L468–L470 (1986).
    [CrossRef]
  5. J. Lucas, “Fluoride glasses,” J. Mater. Sci.24(1), 1–13 (1989).
    [CrossRef]
  6. S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
    [CrossRef]
  7. G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids213–214, 189–192 (1997).
    [CrossRef]
  8. P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
    [CrossRef]
  9. J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
    [CrossRef]
  10. A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of Sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
    [CrossRef]
  11. S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
    [CrossRef]
  12. R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
    [CrossRef]
  13. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U. S. Patent 5 774 620, June 30, 1998.
  14. Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
    [CrossRef]
  15. Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
    [CrossRef]
  16. H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012).
    [CrossRef]
  17. E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
    [CrossRef]
  18. H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
    [CrossRef]
  19. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
    [CrossRef] [PubMed]
  20. H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
    [CrossRef] [PubMed]
  21. H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
    [CrossRef]
  22. I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic Press, 1991), Chap. 5.
  23. G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
    [CrossRef]
  24. Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
    [CrossRef]
  25. H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
    [CrossRef] [PubMed]
  26. G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
    [CrossRef]
  27. C. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: the effects of preform rotation,” J. Lightwave Technol.26(7), 791–798 (2008).
    [CrossRef]
  28. S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
    [CrossRef]
  29. P. W. France, Fluoride Glass Optical Fibers (Blackie, 1990), Chap. 9.
  30. M. Saad, “High purity fluoride glass synthesis: a review” (IR photonics 2009). http://www.iguide-irphotonics.com/pdf/Pwest2009.pdf .
    [CrossRef]
  31. M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
    [CrossRef]
  32. E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
    [CrossRef]
  33. J. E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, 2005), Chap. 6.
  34. H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun.273(1), 133–137 (2007).
    [CrossRef]
  35. E. W. Deeg, C. G. Silverberg, and L. B. Martel, “Method for fire polishing optical glass,” U. S. Patent 3 811 857, May 21, 1974.
  36. Jr. J. E. Dickinson and B. R. Wheaton, “Processes for polishing glass and glass-ceramic surfaces using excimer laser radiation,” U. S. Patent 5 742 026, April 21, 1998.
  37. P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature389(6652), 360–362 (1997).
    [CrossRef]
  38. K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” J. Cell. Physiol.143(1), 100–104 (1990).
    [CrossRef] [PubMed]
  39. M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).
  40. D. R. MacFarlane, P. J. Newman, and A. Voelkel, “Methods of purification of zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc.85(6), 1610–1612 (2002).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

2010 (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

2009 (2)

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
[CrossRef]

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).

2008 (3)

2007 (3)

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun.273(1), 133–137 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

2004 (1)

Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
[CrossRef]

2003 (1)

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

2002 (1)

D. R. MacFarlane, P. J. Newman, and A. Voelkel, “Methods of purification of zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc.85(6), 1610–1612 (2002).
[CrossRef]

2001 (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

2000 (1)

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

1997 (3)

P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature389(6652), 360–362 (1997).
[CrossRef]

G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids213–214, 189–192 (1997).
[CrossRef]

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

1992 (1)

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of Sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

1991 (1)

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

1990 (1)

K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” J. Cell. Physiol.143(1), 100–104 (1990).
[CrossRef] [PubMed]

1989 (1)

J. Lucas, “Fluoride glasses,” J. Mater. Sci.24(1), 1–13 (1989).
[CrossRef]

1988 (1)

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

1987 (1)

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
[CrossRef]

1986 (2)

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys.25(Part 2, No. 6), L468–L470 (1986).
[CrossRef]

1984 (1)

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

1983 (1)

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

1981 (1)

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

1972 (1)

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
[CrossRef]

1971 (1)

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
[CrossRef]

Adam, J. L.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Aggarwal, I. D.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Ahn, Y.

Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
[CrossRef]

Almeida, R. M.

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

Baek, C.-W.

Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
[CrossRef]

Baniel, P.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Baricco, M.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Battezzati, L.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Bei, J.

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
[CrossRef]

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Billi, E.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Bonelli, L.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Boulard, B.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Braglia, M.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Brugger, J.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Chatzimina, M.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).

Chen, G.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Dai, G.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Ebendorff-Heidepriem, H.

Elyamani, A.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of Sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

Fitt, A. D.

Foo, T. C.

Foo, T.-C.

Frangos, J. A.

K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” J. Cell. Physiol.143(1), 100–104 (1990).
[CrossRef] [PubMed]

Fujiura, K.

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

Gao, Y.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Gay, C. V.

K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” J. Cell. Physiol.143(1), 100–104 (1990).
[CrossRef] [PubMed]

Georgiou, G. C.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).

Gerndt, C.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Hatzikiriakos, S. G.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).

Hemming, A.

Höfle, W.

G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids213–214, 189–192 (1997).
[CrossRef]

Horiguchi, M.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

Housiadas, K.

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).

Jestin, Y.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Jinguji, K.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

Kanamori, T.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
[CrossRef]

T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys.25(Part 2, No. 6), L468–L470 (1986).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

Kim, Y.-K.

Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
[CrossRef]

Klein, P. H.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Lancaster, D. G.

Large, M. C. J.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun.273(1), 133–137 (2007).
[CrossRef]

Li, Y.

Lucas, J.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

J. Lucas, “Fluoride glasses,” J. Mater. Sci.24(1), 1–13 (1989).
[CrossRef]

MacFarlane, D. R.

D. R. MacFarlane, P. J. Newman, and A. Voelkel, “Methods of purification of zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc.85(6), 1610–1612 (2002).
[CrossRef]

Mackenzie, J. D.

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

Mailhot, A. M.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of Sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

Manabe, T.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

Mitachi, S.

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

Monro, T. M.

J. Bei, T. M. Monro, A. Hemming, and H. Ebendorff-Heidepriem, “Fabrication of extruded fluoroindate optical fibers,” Opt. Mater. Express3(3), 318–328 (2013).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Analysis of glass flow during extrusion of optical fiber preforms,” Opt. Mater. Express2(3), 304–320 (2012).
[CrossRef]

H. Ebendorff-Heidepriem, T. C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, T.-C. Foo, R. C. Moore, W. Zhang, Y. Li, T. M. Monro, A. Hemming, and D. G. Lancaster, “Fluoride glass microstructured optical fiber with large mode area and mid-infrared transmission,” Opt. Lett.33(23), 2861–2863 (2008).
[CrossRef] [PubMed]

C. Voyce, A. D. Fitt, and T. M. Monro, “Mathematical modeling as an accurate predictive tool in capillary and microstructured fiber manufacture: the effects of preform rotation,” J. Lightwave Technol.26(7), 791–798 (2008).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express15(23), 15086–15092 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun.273(1), 133–137 (2007).
[CrossRef]

Moore, R. C.

Mosso, S.

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Newman, P. J.

D. R. MacFarlane, P. J. Newman, and A. Voelkel, “Methods of purification of zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc.85(6), 1610–1612 (2002).
[CrossRef]

Nishida, Y.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

Ohishi, Y.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Peyghambarian, N.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Pring, A.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Pureza, P. C.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Qian, G.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Rault, G.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Reich, K. M.

K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” J. Cell. Physiol.143(1), 100–104 (1990).
[CrossRef] [PubMed]

Riman, R. E.

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of Sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

Roberts, W. I.

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

Roeder, E.

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
[CrossRef]

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
[CrossRef]

Saad, M.

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
[CrossRef]

Sakaguchi, S.

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
[CrossRef]

T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys.25(Part 2, No. 6), L468–L470 (1986).
[CrossRef]

Sakamoto, T.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

Sauze, A. L.

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

Schneider, H. W.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Schoberth, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Shibata, S.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

Skinner, W. M.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Smektala, F.

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

Staudt, A.

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

Sudo, S.

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

Takahashi, S.

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Terunuma, Y.

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
[CrossRef]

S. Mitachi, Y. Terunuma, Y. Ohishi, and S. Takahashi, “Reduction of impurities in fluoride glass fibers,” J. Lightwave Technol.2(5), 587–592 (1984).
[CrossRef]

Thompson, P. A.

P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature389(6652), 360–362 (1997).
[CrossRef]

Troian, S. M.

P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature389(6652), 360–362 (1997).
[CrossRef]

van Eijkelenborg, M. A.

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun.273(1), 133–137 (2007).
[CrossRef]

Voelkel, A.

D. R. MacFarlane, P. J. Newman, and A. Voelkel, “Methods of purification of zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc.85(6), 1610–1612 (2002).
[CrossRef]

Voyce, C.

West, G. F.

G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids213–214, 189–192 (1997).
[CrossRef]

Xia, F.

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Yoon, J.-Y.

Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
[CrossRef]

Zhang, W.

Zhu, X.

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: Review and prospect,” Adv. Optoelectron.2010, 501956 (2010).
[CrossRef]

Am. Mineral. (1)

G. Qian, F. Xia, J. Brugger, W. M. Skinner, J. Bei, G. Chen, and A. Pring, “Replacement of pyrrhotite by pyrite and marcasite under hydrothermal conditions up to 220 °C: An experimental study of reaction textures and mechanisms,” Am. Mineral.96(11-12), 1878–1893 (2011).
[CrossRef]

Electron. Lett. (3)

H. Ebendorff-Heidepriem, Y. Li, and T. M. Monro, “Reduced loss in extruded soft glass microstructured fiber,” Electron. Lett.43(24), 1343–1345 (2007).
[CrossRef]

H. W. Schneider, A. Schoberth, A. Staudt, and C. Gerndt, “Fluoride glass etching method for preparation of infra-red fibers with improved tensile strength,” Electron. Lett.22(18), 949–950 (1986).
[CrossRef]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infra-red optical fibers,” Electron. Lett.17(21), 775–777 (1981).
[CrossRef]

J. Am. Ceram. Soc. (1)

D. R. MacFarlane, P. J. Newman, and A. Voelkel, “Methods of purification of zirconium tetrafluoride for fluorozirconate glass,” J. Am. Ceram. Soc.85(6), 1610–1612 (2002).
[CrossRef]

J. Cell. Physiol. (1)

K. M. Reich, C. V. Gay, and J. A. Frangos, “Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production,” J. Cell. Physiol.143(1), 100–104 (1990).
[CrossRef] [PubMed]

J. Fluor. Chem. (1)

G. Rault, J. L. Adam, F. Smektala, and J. Lucas, “Fluoride glass compositions for waveguide applications,” J. Fluor. Chem.110(2), 165–173 (2001).
[CrossRef]

J. Lightwave Technol. (2)

J. Mater. Res. (1)

A. M. Mailhot, A. Elyamani, and R. E. Riman, “Reactive atmosphere synthesis of Sol-gel heavy metal fluoride glasses,” J. Mater. Res.7(06), 1534–1540 (1992).
[CrossRef]

J. Mater. Sci. (2)

J. Lucas, “Fluoride glasses,” J. Mater. Sci.24(1), 1–13 (1989).
[CrossRef]

P. C. Pureza, P. H. Klein, W. I. Roberts, and I. D. Aggarwal, “Influence of preform surface treatments on the strength of fluorozirconate fibers,” J. Mater. Sci.26(19), 5149–5154 (1991).
[CrossRef]

J. Mater. Sci. Lett. (1)

S. Sakaguchi, Y. Terunuma, Y. Ohishi, and T. Kanamori, “Fluoride fiber drawing with improved tensile strength,” J. Mater. Sci. Lett.6(9), 1063–1065 (1987).
[CrossRef]

J. Non-Cryst. Solids (6)

E. Roeder, “Flow behaviour of glass during extrusion,” J. Non-Cryst. Solids7(2), 203–220 (1972).
[CrossRef]

G. F. West and W. Höfle, “Spectral attenuation of fluoride glass fibers,” J. Non-Cryst. Solids213–214, 189–192 (1997).
[CrossRef]

E. Roeder, “Extrusion of glass,” J. Non-Cryst. Solids5(5), 377–388 (1971).
[CrossRef]

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Development of PbF2-GaF3-InF3-ZnF2-YF3-LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host,” J. Non-Cryst. Solids221(2-3), 238–244 (1997).
[CrossRef]

Y. Jestin, A. L. Sauze, B. Boulard, Y. Gao, and P. Baniel, “Viscosity matching of new PbF2-InF3-GaF3 based fluoride glasses and ZBLAN for high NA optical fiber,” J. Non-Cryst. Solids320(1-3), 231–237 (2003).
[CrossRef]

R. M. Almeida and J. D. Mackenzie, “The effects of oxide impurities on the optical properties of fluoride glasses,” J. Non-Cryst. Solids56(1-3), 63–68 (1983).
[CrossRef]

J. Non-Newton. Fluid Mech. (1)

M. Chatzimina, G. C. Georgiou, K. Housiadas, and S. G. Hatzikiriakos, “Stability of the annular Poiseuille flow of a Newtonian liquid with slip along the walls,” J. Non-Newton. Fluid Mech.159, 1–9 (2009).

Jpn. J. Appl. Phys. (1)

T. Kanamori and S. Sakaguchi, “Preparation of elevated NA fluoride optical fibers,” Jpn. J. Appl. Phys.25(Part 2, No. 6), L468–L470 (1986).
[CrossRef]

Mater. Res. Bull. (1)

M. Braglia, S. Mosso, G. Dai, E. Billi, L. Bonelli, M. Baricco, and L. Battezzati, “Rheology of tellurite glasses,” Mater. Res. Bull.35(14-15), 2343–2351 (2000).
[CrossRef]

Mater. Sci. Forum (1)

S. Takahashi, T. Kanamori, Y. Ohishi, K. Fujiura, and Y. Terunuma, “Reduction of oxygen impurity in ZrF4-based fluoride glass,” Mater. Sci. Forum32–33, 87–92 (1988).
[CrossRef]

Nature (1)

P. A. Thompson and S. M. Troian, “A general boundary condition for liquid flow at solid surfaces,” Nature389(6652), 360–362 (1997).
[CrossRef]

Opt. Commun. (1)

H. Ebendorff-Heidepriem, T. M. Monro, M. A. van Eijkelenborg, and M. C. J. Large, “Extruded high-NA microstructured polymer optical fiber,” Opt. Commun.273(1), 133–137 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (2)

Proc. SPIE (1)

M. Saad, “Fluoride glass fiber: state of the art,” Proc. SPIE7316, 73160N, 73160N-16 (2009).
[CrossRef]

Wear (1)

Y. Ahn, J.-Y. Yoon, C.-W. Baek, and Y.-K. Kim, “Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction,” Wear257(7-8), 785–789 (2004).
[CrossRef]

Other (7)

E. W. Deeg, C. G. Silverberg, and L. B. Martel, “Method for fire polishing optical glass,” U. S. Patent 3 811 857, May 21, 1974.

Jr. J. E. Dickinson and B. R. Wheaton, “Processes for polishing glass and glass-ceramic surfaces using excimer laser radiation,” U. S. Patent 5 742 026, April 21, 1998.

J. E. Shelby, Introduction to Glass Science and Technology (The Royal Society of Chemistry, 2005), Chap. 6.

I. D. Aggarwal and G. Lu, Fluoride Glass Fiber Optics (Academic Press, 1991), Chap. 5.

P. W. France, Fluoride Glass Optical Fibers (Blackie, 1990), Chap. 9.

M. Saad, “High purity fluoride glass synthesis: a review” (IR photonics 2009). http://www.iguide-irphotonics.com/pdf/Pwest2009.pdf .
[CrossRef]

Y. Nishida, T. Kanamori, T. Sakamoto, Y. Ohishi, and S. Sudo, “Fluoride glass fiber,” U. S. Patent 5 774 620, June 30, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Extrusion force profile for a fluoroindate extrusion trial using die (c) at 320 °C .

Fig. 2
Fig. 2

Bending strength measurement approach.

Fig. 3
Fig. 3

DSC curves for glasses prepared under three different conditions.

Fig. 4
Fig. 4

Linear thermal expansion curve of IZSBGC sample obtained using 5 °C/min heating rate.

Fig. 5
Fig. 5

Calculated viscosity values as a function of extrusion temperature.

Fig. 6
Fig. 6

Scanning electron microscopy images of fiber surfaces and cross-sections (IF1-6).

Fig. 7
Fig. 7

Optical interferometric profiler images (colored images) of preform surface for IF2 fiber drawing (a) before chemo-mechanical treatment; the data in (a) is one of the measurements used for the surface roughness calculation of IE9 preform, Table 2; (b) after chemo-mechanical treatment. Images in grey scales in (a) and (b) are optical microscope images of the preform surfaces before and after chemo-mechanical treatment.

Fig. 8
Fig. 8

surface images of the fiber drop neckdown of IF1-4.

Fig. 9
Fig. 9

Fiber loss spectra and spot loss measurement results at 1550 nm of IF2-6.

Fig. 10
Fig. 10

Breaking strain of IF1-6.

Tables (4)

Tables Icon

Table 1 Melting conditions and properties of glass samples fabricated in this study.

Tables Icon

Table 2 Extrusion Parameters: Preform surface roughness, Sa and Sq, Extrusion temperature, T, Die Channel Diameter, D1, Die Channel Length, L1, Ram Speed, V0, Ram Force, F, Ram pressure, P, Slip coefficient, α, Glass viscosity, η.§

Tables Icon

Table 3 Fiber drawing conditions, results of spot loss measurements and surface roughness of fibers IF1-6§†

Tables Icon

Table 4 Fiber strain of Trial IF1-6

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S a = 1 MN k=0 M1 l=0 N1 | z( x k , y l ) |
S q = 1 MN k=0 M1 l=0 N1 [ z( x k , y l ) ] 2
τ s =r/ 0.42D
P= 128 L 1 π D 1 3 ( D 1 +8α) A 0 V 0 η
α(mm)=0.5557+0.5652 L 1 (mm) ( R 2 =0.950)
logη=A+B/T

Metrics