Abstract

Depressed cladding waveguide structures have been fabricated in BiB3O6 nonlinear crystal by using femtosecond (fs) laser inscription. The nonlinear properties of original BiB3O6 crystal have been well preserved within the waveguide volume. Under 800 nm continuous wave laser pumping, the guided-wave second harmonic generation of violet light at 400 nm has been realized, with a maximum power of ~1.05 mW and a conversion efficiency of ~0.98%/W.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).
  2. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
    [CrossRef]
  3. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
    [CrossRef]
  4. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  5. M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express12(24), 6002–6019 (2004).
    [CrossRef] [PubMed]
  6. V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
    [CrossRef]
  7. F. Chen, H. Hu, K. M. Wang, B. Teng, J. Y. Wang, Q. M. Lu, and D. Y. Shen, “Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB3O6 crystal,” Opt. Lett.26(24), 1993–1995 (2001).
    [CrossRef] [PubMed]
  8. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
    [CrossRef]
  9. S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011).
    [CrossRef] [PubMed]
  10. Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
    [CrossRef]
  11. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
    [CrossRef]
  12. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).
  13. F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. DOI: (2013).
    [CrossRef]
  14. K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012).
    [CrossRef] [PubMed]
  15. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  16. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
    [CrossRef]
  17. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
    [CrossRef]
  18. J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
    [CrossRef] [PubMed]
  19. J. T. Lin, S. J. Yu, Y. G. Ma, W. Fang, F. He, L. L. Qiao, L. M. Tong, Y. Cheng, and Z. Z. Xu, “On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing,” Opt. Express20(9), 10212–10217 (2012).
    [CrossRef] [PubMed]
  20. J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express21(4), 4493–4502 (2013).
    [CrossRef] [PubMed]
  21. J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
    [CrossRef]
  22. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Direct femtosecond laser waveguide writing inside zinc phosphate glass,” Opt. Express19(9), 7929–7936 (2011).
    [CrossRef] [PubMed]
  23. R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
    [CrossRef] [PubMed]
  24. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
    [CrossRef]
  25. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
    [CrossRef]
  26. A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” Proc. SPIE4941, 51–57 (2003).
    [CrossRef]
  27. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]
  28. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, K. Kuan, T. M. Monro, M. Ams, A. Fuerbach, and M. J. Withford, “Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser,” Opt. Lett.36(9), 1587–1589 (2011).
    [CrossRef] [PubMed]
  29. N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012).
    [CrossRef]
  30. M. Thorhauge, J. L. Mortensen, P. Tidemand-Lichtenberg, and P. Buchhave, “Tunable intra-cavity SHG of CW Ti:Sapphire lasers around 785 nm and 810 nm in BiBO-crystals,” Opt. Express14(6), 2283–2288 (2006).
    [CrossRef] [PubMed]

2013 (2)

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. DOI: (2013).
[CrossRef]

J. R. Grenier, L. A. Fernandes, and P. R. Herman, “Femtosecond laser writing of optical edge filters in fused silica optical waveguides,” Opt. Express21(4), 4493–4502 (2013).
[CrossRef] [PubMed]

2012 (8)

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
[CrossRef] [PubMed]

J. Choi, M. Bellec, A. Royon, K. Bourhis, G. Papon, T. Cardinal, L. Canioni, and M. Richardson, “Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass,” Opt. Lett.37(6), 1029–1031 (2012).
[CrossRef] [PubMed]

J. T. Lin, S. J. Yu, Y. G. Ma, W. Fang, F. He, L. L. Qiao, L. M. Tong, Y. Cheng, and Z. Z. Xu, “On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing,” Opt. Express20(9), 10212–10217 (2012).
[CrossRef] [PubMed]

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
[CrossRef] [PubMed]

K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012).
[CrossRef]

2011 (4)

2010 (1)

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

2009 (3)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

2008 (3)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

2007 (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

2006 (1)

2004 (1)

2003 (1)

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” Proc. SPIE4941, 51–57 (2003).
[CrossRef]

2001 (1)

1996 (1)

Ams, M.

Beecher, S. J.

Bellec, M.

Benayas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Bennion, I.

Bourhis, K.

Brow, R. K.

Brown, G.

Buchhave, P.

Buchvarov, I.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Burghoff, J.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Canioni, L.

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Cardinal, T.

Chen, F.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. DOI: (2013).
[CrossRef]

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012).
[CrossRef]

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

F. Chen, H. Hu, K. M. Wang, B. Teng, J. Y. Wang, Q. M. Lu, and D. Y. Shen, “Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB3O6 crystal,” Opt. Lett.26(24), 1993–1995 (2001).
[CrossRef] [PubMed]

Cheng, Y.

Choi, J.

Davis, K. M.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Dong, N. N.

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012).
[CrossRef]

Ebendorff-Heidepriem, H.

Ebrahim-Zadeh, M.

S. J. Beecher, R. R. Thomson, D. T. Reid, N. D. Psaila, M. Ebrahim-Zadeh, and A. K. Kar, “Strain field manipulation in ultrafast laser inscribed BiB3O6 optical waveguides for nonlinear applications,” Opt. Lett.36(23), 4548–4550 (2011).
[CrossRef] [PubMed]

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express12(24), 6002–6019 (2004).
[CrossRef] [PubMed]

Esteban-Martin, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Fang, W.

Fernandes, L. A.

Fletcher, L. B.

Fuerbach, A.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Gaydardzhiev, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Ghotbi, M.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express12(24), 6002–6019 (2004).
[CrossRef] [PubMed]

Grenier, J. R.

Grivas, C.

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Gross, S.

He, F.

Herman, P. R.

Hirao, K.

Hu, H.

Huber, G.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Jaque, D.

R. Mary, S. J. Beecher, G. Brown, R. R. Thomson, D. Jaque, S. Ohara, and A. K. Kar, “Compact, highly efficient ytterbium doped bismuthate glass waveguide laser,” Opt. Lett.37(10), 1691–1693 (2012).
[CrossRef] [PubMed]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Jia, Y. C.

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Kar, A. K.

Kityk, I. V.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Kokabee, O.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Krol, D. M.

Kuan, K.

Lancaster, D. G.

Lin, J. T.

Lu, Q. M.

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

F. Chen, H. Hu, K. M. Wang, B. Teng, J. Y. Wang, Q. M. Lu, and D. Y. Shen, “Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB3O6 crystal,” Opt. Lett.26(24), 1993–1995 (2001).
[CrossRef] [PubMed]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

Ma, Y. G.

Majchrowski, A.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Mary, R.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Mezentsev, V.

Michalski, E.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Miura, K.

Miyata, K.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Monro, T. M.

Mortensen, J. L.

Nikolov, I.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Noack, F.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Ohara, S.

Okhrimchuk, A.

Papon, G.

Petermann, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Petrov, V.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Psaila, N. D.

Qiao, L. L.

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Reid, D. T.

Reis, S. T.

Ren, Y. Y.

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Richardson, M.

Rodenas, A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Romero, C.

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Rotermund, F.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Royon, A.

Shen, D. Y.

Shestakov, A.

Siebenmorgen, J.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Streltsov, A. M.

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” Proc. SPIE4941, 51–57 (2003).
[CrossRef]

Sugimoto, N.

Sugioka, K.

K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

Teng, B.

Thomson, R. R.

Thorhauge, M.

Tidemand-Lichtenberg, P.

Tong, L. M.

Torchia, G. A.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Troy, N.

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Tünnermann, A.

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

Tzankov, P.

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

Vázquez de Aldana, J. R.

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. DOI: (2013).
[CrossRef]

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012).
[CrossRef]

Wang, J. Y.

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

F. Chen, H. Hu, K. M. Wang, B. Teng, J. Y. Wang, Q. M. Lu, and D. Y. Shen, “Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB3O6 crystal,” Opt. Lett.26(24), 1993–1995 (2001).
[CrossRef] [PubMed]

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

Witcher, J. J.

Withford, M. J.

Xu, Z. Z.

Yu, S. J.

Appl. Phys. B (1)

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Express (1)

Y. C. Jia, J. R. Vázquez de Aldana, C. Romero, Y. Y. Ren, Q. M. Lu, and F. Chen, “Femtosecond-laser-inscribed BiB3O6 nonlinear cladding waveguide for second-harmonic generation,” Appl. Phys. Express5(7), 072701 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garn et ceramic waveguides,” Appl. Phys. Lett.92(11), 111103 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Burghoff, S. Nolte, and A. Tünnermann, “Origins of waveguiding in femtosecond laser-structured LiNbO3,” Appl. Phys., A Mater. Sci. Process.89(1), 127–132 (2007).
[CrossRef]

J. Appl. Phys. (1)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond laser for photonics applications,” J. Appl. Phys.106(5), 051101 (2009).
[CrossRef]

Lab Chip (1)

K. Sugioka and Y. Cheng, “Femtosecond laser processing for optofluidic fabrication,” Lab Chip12(19), 3576–3589 (2012).
[CrossRef] [PubMed]

Laser Photon. Rev. (1)

F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev.6(5), 622–640 (2012).
[CrossRef]

Laser Photonics Rev. (3)

V. Petrov, M. Ghotbi, O. Kokabee, A. Esteban-Martin, F. Noack, A. Gaydardzhiev, I. Nikolov, P. Tzankov, I. Buchvarov, K. Miyata, A. Majchrowski, I. V. Kityk, F. Rotermund, E. Michalski, and M. Ebrahim-Zadeh, “Femtosecond nonlinear frequency conversion based on BiB3O6,” Laser Photonics Rev.4(1), 53–98 (2010).
[CrossRef]

F. Chen and J. R. Vázquez de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photonics Rev. DOI: (2013).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photonics Rev.3(6), 535–544 (2009).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008).
[CrossRef]

Nucl. Instr. and Meth. B (1)

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, “Formation of planar waveguide in BiB3O6 crystal by MeV carbon implantation,” Nucl. Instr. and Meth. B266(6), 899–903 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Phys. Status Solidi: rrl (1)

N. N. Dong, F. Chen, and J. R. Vázquez de Aldana, “Efficient second harmonic generation by birefringent phase matching in femtosecond laser inscribed KTP cladding waveguides,” Phys. Status Solidi: rrl6(7), 306–308 (2012).
[CrossRef]

Proc. SPIE (1)

A. M. Streltsov, “Femtosecond-laser writing of tracks with depressed refractive index in crystals,” Proc. SPIE4941, 51–57 (2003).
[CrossRef]

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011).
[CrossRef]

Other (3)

E. J. Murphy, Integrated Optical Circuits and Components: Design and Applications (Marcel Dekker, 1999).

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical transmission microscopy image of the cross section of the BiB3O6 cladding waveguide with a diameter of 150 μm. The insets depict the top view of the waveguide and the magnification of a section of the waveguide contour. And (b) the near-field intensity distributions of the TE and TM modes for the cladding waveguide at a wavelength of 632.8 nm.

Fig. 2
Fig. 2

(a) 2D and (b) 3D confocal μ-SH cross-sectional mappings obtained from the end face of the fs laser inscribed BiB3O6 cladding waveguide.

Fig. 3
Fig. 3

Normalized spatial intensity distributions of the 800 nm fundamental wave (red) and 400 nm SH wave (violet) from the BiB3O6 cladding waveguide.

Fig. 4
Fig. 4

SHG output power versus the fundamental pump power of the BiB3O6 cladding waveguide under cw laser pump. The solid lines represent the fit of the experimental data.

Metrics