Abstract

We report the fabrication and operation of a Cr:ZnSe buried channel waveguide laser operating at 2500 nm with a linewidth of 10 nm and a maximum power output of 1.7 W. Ultrafast laser inscription is used to fabricate the depressed cladding waveguide in a polycrystalline Cr:ZnSe sample. A thermal model is developed and predicts performance degradation at higher pump levels due to thermal quenching of the lifetime. This prediction is supported by the experimental results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
    [CrossRef]
  2. R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
    [CrossRef]
  3. I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
    [CrossRef]
  4. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr(2+):ZnSemaster oscillator power amplifier systems,” Opt. Express18(14), 15062–15072 (2010).
    [CrossRef] [PubMed]
  5. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” SPIE Proceedings 5460 (2004).
    [CrossRef]
  6. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).
  7. G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).
  8. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
    [CrossRef]
  9. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
    [CrossRef]
  10. J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
    [CrossRef] [PubMed]
  11. J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express18(25), 25999–26006 (2010).
    [CrossRef] [PubMed]
  12. J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
    [CrossRef] [PubMed]
  13. J. R. Macdonald, R. R. Thomson, S. J. Beecher, N. D. Psaila, H. T. Bookey, and A. K. Kar, “Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe,” Opt. Lett.35(23), 4036–4038 (2010).
    [CrossRef] [PubMed]
  14. J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett.102(16), 161110 (2013).
    [CrossRef]
  15. J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett.38(13), 2194–2196 (2013).
    [CrossRef] [PubMed]
  16. W. J. Tropf, “Temperature-dependent refractive index models of BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng.34(5), 1369–1373 (1995).
    [CrossRef]
  17. H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13(1), 103–150 (1984).
    [CrossRef]
  18. G. A. Slack, “Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities,” Phys. Rev.6(10), 3791–3800 (1972).
    [CrossRef]
  19. G. C. Bhar, “Refractive index interpolation in phase-matching,” Appl. Opt.15(2), 305–307 (1976).
    [CrossRef] [PubMed]
  20. A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
    [CrossRef] [PubMed]

2013 (2)

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett.102(16), 161110 (2013).
[CrossRef]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett.38(13), 2194–2196 (2013).
[CrossRef] [PubMed]

2012 (2)

A. Okhrimchuk, V. Mezentsev, A. Shestakov, and I. Bennion, “Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses,” Opt. Express20(4), 3832–3843 (2012).
[CrossRef] [PubMed]

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
[CrossRef]

2011 (2)

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

2010 (3)

2005 (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
[CrossRef]

2004 (1)

I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
[CrossRef]

1997 (1)

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

1995 (1)

W. J. Tropf, “Temperature-dependent refractive index models of BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng.34(5), 1369–1373 (1995).
[CrossRef]

1984 (1)

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13(1), 103–150 (1984).
[CrossRef]

1976 (1)

1972 (1)

G. A. Slack, “Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities,” Phys. Rev.6(10), 3791–3800 (1972).
[CrossRef]

Alford, W. J.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).

Badding, J. V.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Beecher, S. J.

Bennion, I.

Berry, P. A.

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett.102(16), 161110 (2013).
[CrossRef]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett.38(13), 2194–2196 (2013).
[CrossRef] [PubMed]

P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr(2+):ZnSemaster oscillator power amplifier systems,” Opt. Express18(14), 15062–15072 (2010).
[CrossRef] [PubMed]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
[CrossRef]

Bhar, G. C.

Bookey, H. T.

Brown, G.

Burger, A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

Camata, R. P.

Cankaya, H.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
[CrossRef]

Carrig, T. J.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).

Chen, K.-T.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

Cizmeciyan, M. N.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
[CrossRef]

DeLoach, L. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Fedorov, V. V.

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express18(25), 25999–26006 (2010).
[CrossRef] [PubMed]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

Gopalan, V.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

He, R.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Healy, N.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Kar, A. K.

Krishnamurthi, M.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Krupke, W. F.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Kurt, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
[CrossRef]

Li, H. H.

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13(1), 103–150 (1984).
[CrossRef]

Macdonald, J. R.

Martyshkin, D. V.

McKay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
[CrossRef]

Mezentsev, V.

Mirov, M. S.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

Mirov, S. B.

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express18(25), 25999–26006 (2010).
[CrossRef] [PubMed]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

Moskalev, I. S.

J. E. Williams, V. V. Fedorov, D. V. Martyshkin, I. S. Moskalev, R. P. Camata, and S. B. Mirov, “Mid-IR laser oscillation in Cr2+:ZnSe planar waveguide,” Opt. Express18(25), 25999–26006 (2010).
[CrossRef] [PubMed]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

Nilsson, J.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

Okhrimchuk, A.

Page, R. H.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Patel, F. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

Payne, S. A.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Peacock, A. C.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
[CrossRef]

Psaila, N. D.

Sazio, P. J. A.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Schaffers, K. I.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

Schepler, K. L.

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett.102(16), 161110 (2013).
[CrossRef]

J. R. Macdonald, S. J. Beecher, P. A. Berry, G. Brown, K. L. Schepler, and A. K. Kar, “Efficient mid-infrared Cr:ZnSe channel waveguide laser operating at 2486 nm,” Opt. Lett.38(13), 2194–2196 (2013).
[CrossRef] [PubMed]

P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr(2+):ZnSemaster oscillator power amplifier systems,” Opt. Express18(14), 15062–15072 (2010).
[CrossRef] [PubMed]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
[CrossRef]

Sennaroglu, A.

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
[CrossRef]

Shestakov, A.

Slack, G. A.

G. A. Slack, “Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities,” Phys. Rev.6(10), 3791–3800 (1972).
[CrossRef]

Sorokin, E.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

Sorokina, I. T.

I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
[CrossRef]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

Sparks, J. R.

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Tassano, J. B.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

Thomson, R. R.

Tiemann, B. G.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).

Tropf, W. J.

W. J. Tropf, “Temperature-dependent refractive index models of BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng.34(5), 1369–1373 (1995).
[CrossRef]

Wagner, G. J.

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).

Wilke, G. D.

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

Williams, J. E.

Adv. Mater. (1)

J. R. Sparks, R. He, N. Healy, M. Krishnamurthi, A. C. Peacock, P. J. A. Sazio, V. Gopalan, and J. V. Badding, “Zinc selenide optical fibers,” Adv. Mater.23(14), 1647–1651 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods,” Appl. Phys. B106(4), 887–892 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

J. R. Macdonald, S. J. Beecher, P. A. Berry, K. L. Schepler, and A. K. Kar, “Compact mid-infrared Cr:ZnSe channel waveguide laser,” Appl. Phys. Lett.102(16), 161110 (2013).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron.32(6), 885–895 (1996).
[CrossRef]

R. H. Page, K. I. Schaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K.-T. Chen, and A. Burger, “Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron.33(4), 609–619 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McKay, “Thermal Effects in Cr2+:ZnSe thin disk lasers,” IEEE J. Sel. Top. Quantum Electron.11(3), 713–720 (2005).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of ZnS, ZnSe, and ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data13(1), 103–150 (1984).
[CrossRef]

Opt. Eng. (1)

W. J. Tropf, “Temperature-dependent refractive index models of BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng.34(5), 1369–1373 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

I. T. Sorokina, “Cr2+-doped II-VI materials for lasers and nonlinear optics,” Opt. Mater.26(4), 395–412 (2004).
[CrossRef]

Phys. Rev. (1)

G. A. Slack, “Thermal conductivity of II-VI compounds and phonon scattering by Fe2+ impurities,” Phys. Rev.6(10), 3791–3800 (1972).
[CrossRef]

Science (1)

J. Nilsson and D. N. Payne, “Physics. High-power fiber lasers,” Science332(6032), 921–922 (2011).
[CrossRef] [PubMed]

Other (3)

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” SPIE Proceedings 5460 (2004).
[CrossRef]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Advanced Solid-State Photonics, San Diego, Ca. USA, AMC2 (2010).

G. J. Wagner, B. G. Tiemann, W. J. Alford, and T. J. Carrig, “Single-frequency Cr:ZnSe laser,” in Advanced Solid-State Photonics, WB12 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Circular cross-section, depressed-index cladding waveguide design (left) and 120 µm diameter sample (right), composed of individual modified regions (dark) created via ultrashort pulse laser inscription in unmodified material (light).

Fig. 2
Fig. 2

Waveguide laser cavity configuration consisting of pump lens (L1), input and output couplers (IC/OC) surrounding the Cr:ZnSe waveguide crystal, output collimating lens (L2) and a dichroic mirror to separate residual pump and laser output (DC).

Fig. 3
Fig. 3

Laser performance for varying output coupler reflectivities.

Fig. 4
Fig. 4

Spectral response of laser system overlaid with spectral reflectivity response of cavity mirrors.

Fig. 5
Fig. 5

Plots of calculated temperature of a Cr:ZnSe slab pumped by a Gaussian beam with 40 µm 1/e2 radii propagating along a 40 µm radius waveguide structure. The bottom dark surface was fixed at room temperature to simulate mounting on a heat sink. The left plot is a surface plot of temperature; the right plot is an isosurface plot of the region near the waveguide region. The dimensions and location of the waveguide region were chosen to match those of the actual waveguide sample used to demonstrate lasing except for the waveguide propagation length (0.5 mm rather than the actual 6 mm length).

Fig. 6
Fig. 6

Calculation of change in lasing threshold power with respect to change in incident pump power as a function of temperature for the waveguide laser described in [15].

Tables (1)

Tables Icon

Table 1 Optical constants of II-VI materialsa

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P out =S( P in P th )
P th =κ( I sat )
I sat ( T )= h υ e σ e τ( T )
0= d P out d P in =S( 1 d P th d P in )
d P th d P in =κ d I sat dT dT d P in
κh υ e σ e d( 1/τ ) dT dT d P in =1
Δ T crit = dT d P in P th +( 1S ) dT d P in ( P crit P th )
P crit = Δ T crit S P th dT d P in ( 1S ) dT d P in

Metrics