Abstract

Terahertz beam-splitters are fabricated from conductive polymers inkjet printed onto an acetate film substrate. The principle is a significant evolution of the recently proposed ultra-thin beam-splitter realized using silver conductive paint. The splitting ratios of the beam-splitters are dependent on the thickness and conductivity of the conductive polymer layer, allowing for any splitting ratio to be achieved accurately from a controlled printing process. As the processing technology of conductive polymers matures, this approach will allow for low cost and accurate fabrication of THz beam-splitters with a predefined near frequency-independent splitting ratio, in contrast to the commonly used float zone silicon wafers.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
    [CrossRef]
  2. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
    [CrossRef]
  3. A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
    [CrossRef]
  4. T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
    [CrossRef]
  5. E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
    [CrossRef]
  6. B. S.-Y. Ung, C. Fumeaux, H. Lin, B. Fischer, B. W.-H. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express20(5), 4968–4978 (2012).
    [CrossRef] [PubMed]
  7. C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves32(12), 1–4 (2011).
  8. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Opt.46(32), 7884–7888 (2007).
    [CrossRef] [PubMed]
  9. J.-S. Li, D.-G. Xu, and J.-Q. Yao, “Compact terahertz wave polarizing beam splitter,” Appl. Opt.49(24), 4494–4497 (2010).
    [CrossRef] [PubMed]
  10. M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
    [CrossRef]
  11. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008).
    [CrossRef] [PubMed]
  12. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express19(5), 4528–4535 (2011).
    [CrossRef] [PubMed]
  13. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt.50(15), 2256–2262 (2011).
    [CrossRef] [PubMed]
  14. A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hérault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett.36(11), 1960–1962 (2011).
    [CrossRef] [PubMed]
  15. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
    [CrossRef] [PubMed]
  16. Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
    [CrossRef]
  17. S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
    [CrossRef]
  18. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  19. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  20. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express19(25), 24884–24889 (2011).
    [CrossRef]
  21. A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
    [CrossRef]
  22. L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
    [CrossRef]
  23. T. V. Vernitskaya and O. N. Efimov, “Polypyrrole: a conducting polymer; its synthesis, properties and applications,” Russ. Chem. Rev.66(5), 443–457 (1997).
    [CrossRef]
  24. M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
    [CrossRef]
  25. O. S. Heavens, Optical Properties of Thin Solid Films(Butterworth’s Scientific Publications, 1955).
  26. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am.J. Phys.60(3), 257–261 (1992).
    [CrossRef]
  27. I. Pupeza, R. Wilk, and M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy,” Opt. Express15(7), 4335–4350 (2007).
    [CrossRef] [PubMed]
  28. B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
    [CrossRef]
  29. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
    [CrossRef]
  30. M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev.104(3), 845–846 (1956).
    [CrossRef]
  31. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
    [CrossRef]
  32. S. Brett Walker and J. A. Lewis, “Reactive silver inks for patterning high-conductivity features at mild temperatures,” J. Am. Chem. Soc.134(3), 1419–1421 (2012).
    [CrossRef] [PubMed]

2013

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

2012

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

S. Brett Walker and J. A. Lewis, “Reactive silver inks for patterning high-conductivity features at mild temperatures,” J. Am. Chem. Soc.134(3), 1419–1421 (2012).
[CrossRef] [PubMed]

B. S.-Y. Ung, C. Fumeaux, H. Lin, B. Fischer, B. W.-H. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express20(5), 4968–4978 (2012).
[CrossRef] [PubMed]

2011

B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express19(5), 4528–4535 (2011).
[CrossRef] [PubMed]

B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt.50(15), 2256–2262 (2011).
[CrossRef] [PubMed]

A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hérault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett.36(11), 1960–1962 (2011).
[CrossRef] [PubMed]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express19(25), 24884–24889 (2011).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express19(26), B848–B861 (2011).
[CrossRef]

B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
[CrossRef]

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
[CrossRef]

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves32(12), 1–4 (2011).

2010

2009

2008

E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
[CrossRef]

Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008).
[CrossRef] [PubMed]

2007

2002

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

2000

T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
[CrossRef]

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

1997

T. V. Vernitskaya and O. N. Efimov, “Polypyrrole: a conducting polymer; its synthesis, properties and applications,” Russ. Chem. Rev.66(5), 443–457 (1997).
[CrossRef]

1992

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am.J. Phys.60(3), 257–261 (1992).
[CrossRef]

1988

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
[CrossRef]

1977

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

1956

M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev.104(3), 845–846 (1956).
[CrossRef]

Abbott, D.

B. S.-Y. Ung, C. Fumeaux, H. Lin, B. Fischer, B. W.-H. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express20(5), 4968–4978 (2012).
[CrossRef] [PubMed]

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

Adam, A. J.

Almeida, A. M.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Arikawa, T.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Asfar, S.

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

Atakaramians, S.

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

Bang, O.

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Bauer, S.

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am.J. Phys.60(3), 257–261 (1992).
[CrossRef]

Berry, C.

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves32(12), 1–4 (2011).

Brett Walker, S.

S. Brett Walker and J. A. Lewis, “Reactive silver inks for patterning high-conductivity features at mild temperatures,” J. Am. Chem. Soc.134(3), 1419–1421 (2012).
[CrossRef] [PubMed]

Carr, G. L.

Chan, H. P.

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

Chen, J.

B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
[CrossRef]

Chiang, C. K.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Correia, H. M. G.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Coutaz, J.-L.

Cundiff, S. T.

Das, A.

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

Dupuis, A.

Efimov, O. N.

T. V. Vernitskaya and O. N. Efimov, “Polypyrrole: a conducting polymer; its synthesis, properties and applications,” Russ. Chem. Rev.66(5), 443–457 (1997).
[CrossRef]

Fischer, B.

Fisher, A. J.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Freitag, D.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

Fumeaux, C.

Garet, F.

Grischkowsky, D.

T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
[CrossRef]

Groenendaal, L.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Hauge, R. H.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films(Butterworth’s Scientific Publications, 1955).

Heeger, A. J.

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
[CrossRef]

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Hérault, E.

Homes, C. C.

Hong, Z.

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

Huang, Z.

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

Jansen, C.

Jarrahi, M.

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves32(12), 1–4 (2011).

Jeon, T.-I.

T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
[CrossRef]

Jepsen, P. U.

Jonas, F.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

Jördens, C.

Kawayama, I.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Kivelson, S.

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
[CrossRef]

Koch, M.

Kono, J.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

LaVeigne, J. D.

Leonhardt, R.

Lewis, J. A.

S. Brett Walker and J. A. Lewis, “Reactive silver inks for patterning high-conductivity features at mild temperatures,” J. Am. Chem. Soc.134(3), 1419–1421 (2012).
[CrossRef] [PubMed]

Li, J.-S.

Li, X.

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

Lin, H.

Liu, J.

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

Liu, L.

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

Lo, Y. H.

Lobo, R. P. S. M.

Louis, E. J.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

MacDiarmid, A. G.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

Makowski, M.

Mazhorova, A.

Megaridis, C. M.

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

Mendis, R.

Menon, R.

T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
[CrossRef]

Miane, J.

E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
[CrossRef]

Mittleman, D. M.

Mounaix, P.

E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
[CrossRef]

Mukherjee, A. K.

T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
[CrossRef]

Munro, T. M.

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

Nagel, V. M.

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

Ness, H.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Ng, B. W.-H.

Nguema, E.

E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
[CrossRef]

Nielsen, K.

Okuzaki, H.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
[CrossRef]

Otani, C.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
[CrossRef]

Park, H.

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

Parrott, E. P. J.

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

Pickwell-MacPherson, E.

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

Pielartzik, H.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

Pint, C. L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Planken, P. C.

Pupeza, I.

Ramos, M. M. D.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Rasmussen, H. K.

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
[CrossRef] [PubMed]

Ren, L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Reynolds, J. R.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

Ribeiro, R. M.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Rozé, M.

Scheller, M.

Scherger, B.

Schrieffer, J. R.

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
[CrossRef]

Schutzius, T. M.

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

Shepherd, R.

B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
[CrossRef]

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Shimizu, M.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
[CrossRef]

Shirakawa, H.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

Siemion, A.

Skorobogatiy, M.

Stoneham, A. M.

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Su, W. P.

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
[CrossRef]

Subhechha, S.

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

Sypek, M.

Takeya, K.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Tanner, D. B.

Tinkham, M.

M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev.104(3), 845–846 (1956).
[CrossRef]

Tonouchi, M.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Ung, B.

Ung, B. S.-Y.

Vernitskaya, T. V.

T. V. Vernitskaya and O. N. Efimov, “Polypyrrole: a conducting polymer; its synthesis, properties and applications,” Russ. Chem. Rev.66(5), 443–457 (1997).
[CrossRef]

Vieweg, N.

Vigneras, V.

E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
[CrossRef]

Wallace, G. G.

B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
[CrossRef]

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Wang, T.

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

Wang, W.

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

Weng, B.

B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
[CrossRef]

Wiesauer, K.

Wilk, R.

Xu, D.-G.

Yamashita, M.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
[CrossRef]

Yao, J.-Q.

Zhang, M.

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

Adv. Mater.

L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future,” Adv. Mater.12(7), 481–494 (2000).
[CrossRef]

Am.J. Phys.

S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am.J. Phys.60(3), 257–261 (1992).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Yamashita, C. Otani, M. Shimizu, and H. Okuzaki, “Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy,” Appl. Phys. Lett.99(14), 143307 (2011).
[CrossRef]

A. Das, T. M. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett.101(24), 243108 (2012).
[CrossRef]

T.-I. Jeon, D. Grischkowsky, A. K. Mukherjee, and R. Menon, “Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy,” Appl. Phys. Lett.77(16), 2452–2454 (2000).
[CrossRef]

S. Atakaramians, S. Asfar, V. M. Nagel, H. K. Rasmussen, O. Bang, T. M. Munro, and D. Abbott, “Direct probing of evanescent field characterization of porous fibers,” Appl. Phys. Lett.98(12), 121104 (2011).
[CrossRef]

Eur. Polym. J.

E. Nguema, V. Vigneras, J. Miane, and P. Mounaix, “Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy,” Eur. Polym. J.44(1), 124–129 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. Pickwell-MacPherson, “Robust thin-film wire-grid THz polarizer fabricated via a low-cost approach,” IEEE Photon. Technol. Lett.25(1), 81–84 (2013).
[CrossRef]

J. Am. Chem. Soc.

S. Brett Walker and J. A. Lewis, “Reactive silver inks for patterning high-conductivity features at mild temperatures,” J. Am. Chem. Soc.134(3), 1419–1421 (2012).
[CrossRef] [PubMed]

J. Chem. Soc., Chem. Commun.

H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x,J. Chem. Soc., Chem. Commun.16, 578–580 (1977).
[CrossRef]

J. Infrared Millim. Terahertz Waves

C. Berry and M. Jarrahi, “Broadband terahertz polarizing beam splitter on a polymer substrate,” J. Infrared Millim. Terahertz Waves32(12), 1–4 (2011).

J. Mater. Chem.

B. Weng, R. Shepherd, J. Chen, and G. G. Wallace, “Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation,” J. Mater. Chem.21(6), 1918–1924 (2011).
[CrossRef]

J. Phys—Condens. Matter

A. M. Stoneham, M. M. D. Ramos, A. M. Almeida, H. M. G. Correia, R. M. Ribeiro, H. Ness, and A. J. Fisher, “Understanding electron flow in conducting polymer films: injection, mobility, recombination and mesostructure,” J. Phys—Condens. Matter14(42), 9877–9898 (2002).
[CrossRef]

Nano Lett.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett.12(7), 787–790 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

M. Tinkham, “Energy gap interpretation of experiments on infrared transmission through superconducting films,” Phys. Rev.104(3), 845–846 (1956).
[CrossRef]

Phys. Rev. B

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B76(12), 125408 (2007).
[CrossRef]

Proc. SPIE, Millimeter-Wave and Terahertz Technologies II

M. Zhang, X. Li, W. Wang, J. Liu, and Z. Hong, “Terahertz polarizing beam splitter based on copper grating on polyimide substrate,” Proc. SPIE, Millimeter-Wave and Terahertz Technologies II8562, 85621S (2012).
[CrossRef]

Rev. Mod. Phys.

A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, “Solitons in conducting polymers,” Rev. Mod. Phys.60(3), 781–850 (1988).
[CrossRef]

Russ. Chem. Rev.

T. V. Vernitskaya and O. N. Efimov, “Polypyrrole: a conducting polymer; its synthesis, properties and applications,” Russ. Chem. Rev.66(5), 443–457 (1997).
[CrossRef]

Other

O. S. Heavens, Optical Properties of Thin Solid Films(Butterworth’s Scientific Publications, 1955).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

From left to right, 1 μm and 2 μm thick PEDOT samples and PPY 1 μm in thickness. The conductive polymers are inkjet printed on top of a 100 μm thick acetate overhead projector sheet substrate. The printed squares of conductive polymers have 15 mm side length. The two PEDOT samples show slight non-uniformity, due to the inkjet printing process, and thus appear as an array of striped horizontal lines.

Fig. 2
Fig. 2

A SEM micrograph of the surface of the 1 μm thick PPY sample. As with the PEDOT samples, the stripes have a width of approximately 120 μm and gaps between stripes of approximately 55 μm.

Fig. 3
Fig. 3

Photograph of the Menlo Systems THz-TDS system used for measurements. A special sample holder is fabricated, allowing the detector to be swiveled at the appropriate angle to measure both the reflected and transmitted spectra, depending on the angle of incidence on the sample. These positions are highlighted by the blue dashed boxes. The sample is also easily adjusted with a rotational stage accurate to 0.1°.

Fig. 4
Fig. 4

Transmittance & reflectance plots of the PEDOT 1 μm thick sample. (a) Shows the transmittance & reflectance plot of the sample at 45° incidence, including the calculated loss, while (b) shows the angular dependence of the sample at varying angles of incidence at a fixed frequency of 0.5 THz. (a) Shows a slight variance from the reflectance theoretical model at frequencies above 0.6 THz, due to the non-uniformity of the sample and the substrate not being perfectly optically flat.

Fig. 5
Fig. 5

Transmittance & reflectance plots of the PEDOT 2 μm thick sample. (a) Shows the transmittance & reflectance plot of the sample at 45° incidence, including the calculated loss, while (b) shows the angular dependence of the sample at varying angles of incidence at a fixed frequency of 0.5 THz. The measured data shows good agreement with the theoretical model, however the thicker 2 μm PEDOT coating shows a significantly higher loss than the 1 μm sample.

Fig. 6
Fig. 6

Transmittance & reflectance plots of the PPY 1 μm thick sample. (a) Shows the transmittance & reflectance plot of the sample at 45° incidence, including the calculated loss, while (b) shows the angular dependence of the sample at varying angles of incidence at a fixed frequency of 0.5 THz. Again, as for the 1 μm PEDOT coating, the 1 μm thick PPY coating show a degradation of the reflectance compared to expectations because of the imperfect flatness of the sample.

Fig. 7
Fig. 7

Normal transmittance measurements of the three samples, PEDOT 1 & 2 μm and PPY in both horizontal and vertical sample orientations (solid and dashed curves respectively). The two differing orientations show no observable differences.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A ( ω ) = ( 4 y n ˜ cos φ 0 ) / ( 2 + y n ˜ cos φ 0 ) 2 ,

Metrics