Abstract

Homogeneous spectrum broadening caused by temperature increasing and inhomogeneous broadening caused by ions random replacement in Nd3+-doped LuxY1-xVO4 (x = 0, 0.26, 0.41, 0.61, 0.8 and 1) series crystals were investigated. The results revealed that random replacement had greatest influence on the Nd:Lu0.61Y0.39VO4 crystal which showed the widest inhomogeneous spectrum broadening among these crystals. With a semiconductor saturable absorber mirror (SESAM), the passively mode-locking of this series crystals was carried out under the same condition. The shortest pulse was obtained also by the Nd:Lu0.61Y0.39VO4 crystal, which indirectly manifested the widest line-width of this proportion and its excellent properties for pulse laser applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966).
    [CrossRef]
  2. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett.16(1), 42–44 (1991).
    [CrossRef] [PubMed]
  3. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
    [CrossRef] [PubMed]
  4. J. R. O'Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett.9(11), 407–409 (1966).
    [CrossRef]
  5. U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
    [CrossRef] [PubMed]
  6. Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  7. T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ration for Nd3+ in Yttrium Aluminum Garnet,” Phys. Rev.167(2), 289–291 (1968).
    [CrossRef]
  8. T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
    [CrossRef]
  9. D. K. Sardar and S. C. Stubblefield, “Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host,” J. Appl. Phys.83(3), 1195–1199 (1998).
    [CrossRef]
  10. L. A. Riseberg and W. C. Holton, “Nd ion site distribution and spectral line broadening in YAlG:Lu,Nd laser materials,” J. Appl. Phys.43(4), 1876–1878 (1972).
    [CrossRef]
  11. L. A. Riseberg, R. M. Brown, and W. C. Holton, “New class of intermediate-gain laser materials: mixed garnets,” Appl. Phys. Lett.23(3), 127–129 (1973).
    [CrossRef]
  12. L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
    [CrossRef]
  13. S. Y. Zhang, H. T. Huang, L. Xu, M. J. Wang, F. Chen, J. Q. Xu, J. L. He, and B. Zhao, “Continuous wave and passively Q-switched Nd:Lu xY1-x VO4 laser at 1.34 μm with V3+:YAG as the saturable absorber,” Opt. Express19(3), 1830–1835 (2011).
    [CrossRef] [PubMed]
  14. T. Li, S. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. Yang, “Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser,” J. Opt. Soc. Am. B26(12), 2445–2448 (2009).
    [CrossRef]
  15. Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
    [CrossRef]
  16. Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
    [CrossRef]
  17. V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B15(3), 1052–1060 (1998).
    [CrossRef]
  18. I. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” University of Southampton PhD thesis, pp. 50−79 (2003).
  19. I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
    [CrossRef]
  20. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bassi, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B26(11), 2084–2088 (2009).
    [CrossRef]
  21. A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
    [CrossRef]
  22. L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
    [CrossRef]
  23. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, and M. H. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett.32(15), 2152–2154 (2007).
    [CrossRef] [PubMed]
  24. W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-Induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
    [CrossRef]
  25. S. A. Johnson, H. G. Freie, A. L. Schawlow, and W. M. Yen, “Thermal shifts in the energy levels of LaF3:Nd3+,” J. Opt. Soc. Am. B57(6), 734–737 (1967).
    [CrossRef]
  26. D. K. Sardar and R. M. Yow, “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater.14(1), 5–11 (2000).
    [CrossRef]
  27. D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
    [CrossRef]
  28. X. Délen, F. Balembois, and P. Georges, “Temperature dependence of the emission cross section of Nd:YVO4 around 1064 nm and consequences on laser operation,” J. Opt. Soc. Am. B28(5), 972–976 (2011).
    [CrossRef]
  29. D. K. Sardar and R. M. Yow, “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12,” Opt. Mater.10(3), 191–199 (1998).
    [CrossRef]
  30. M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004).
    [CrossRef]
  31. G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
    [CrossRef]

2012

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express20(7), 6989–7001 (2012).
[CrossRef] [PubMed]

Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
[CrossRef]

2011

2010

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

2009

2008

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

2007

2004

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004).
[CrossRef]

2003

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

2000

D. K. Sardar and R. M. Yow, “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

1998

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

D. K. Sardar and R. M. Yow, “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12,” Opt. Mater.10(3), 191–199 (1998).
[CrossRef]

D. K. Sardar and S. C. Stubblefield, “Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host,” J. Appl. Phys.83(3), 1195–1199 (1998).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B15(3), 1052–1060 (1998).
[CrossRef]

1991

1983

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
[CrossRef]

1976

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
[CrossRef]

1973

L. A. Riseberg, R. M. Brown, and W. C. Holton, “New class of intermediate-gain laser materials: mixed garnets,” Appl. Phys. Lett.23(3), 127–129 (1973).
[CrossRef]

1972

L. A. Riseberg and W. C. Holton, “Nd ion site distribution and spectral line broadening in YAlG:Lu,Nd laser materials,” J. Appl. Phys.43(4), 1876–1878 (1972).
[CrossRef]

1969

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
[CrossRef]

1968

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ration for Nd3+ in Yttrium Aluminum Garnet,” Phys. Rev.167(2), 289–291 (1968).
[CrossRef]

1967

S. A. Johnson, H. G. Freie, A. L. Schawlow, and W. M. Yen, “Thermal shifts in the energy levels of LaF3:Nd3+,” J. Opt. Soc. Am. B57(6), 734–737 (1967).
[CrossRef]

1966

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966).
[CrossRef]

J. R. O'Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett.9(11), 407–409 (1966).
[CrossRef]

1964

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-Induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Balembois, F.

Bao, Q. L.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Bassi, M.

Birnbaum, M.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
[CrossRef]

Brown, C. T. A.

Brown, R. M.

L. A. Riseberg, R. M. Brown, and W. C. Holton, “New class of intermediate-gain laser materials: mixed garnets,” Appl. Phys. Lett.23(3), 127–129 (1973).
[CrossRef]

Cases, R.

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

Chai, B. H. T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

Chen, F.

Chen, J. Z.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

Chen, L. J.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Cornacchia, F.

Délen, X.

DeMaria, A. J.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966).
[CrossRef]

Deshazer, L. G.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
[CrossRef]

Fincher, C. L.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
[CrossRef]

Fornasiero, L.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

Freie, H. G.

S. A. Johnson, H. G. Freie, A. L. Schawlow, and W. M. Yen, “Thermal shifts in the energy levels of LaF3:Nd3+,” J. Opt. Soc. Am. B57(6), 734–737 (1967).
[CrossRef]

García-Rubio, I.

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

Georges, P.

Geusic, J. E.

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ration for Nd3+ in Yttrium Aluminum Garnet,” Phys. Rev.167(2), 289–291 (1968).
[CrossRef]

Grange, R.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004).
[CrossRef]

Guo, L.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Haas, R. A.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
[CrossRef]

Haiml, M.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004).
[CrossRef]

Hall, D. W.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
[CrossRef]

He, J. L.

Heynau, H.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966).
[CrossRef]

Holton, W. C.

L. A. Riseberg, R. M. Brown, and W. C. Holton, “New class of intermediate-gain laser materials: mixed garnets,” Appl. Phys. Lett.23(3), 127–129 (1973).
[CrossRef]

L. A. Riseberg and W. C. Holton, “Nd ion site distribution and spectral line broadening in YAlG:Lu,Nd laser materials,” J. Appl. Phys.43(4), 1876–1878 (1972).
[CrossRef]

Hu, D. W.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Huang, H. T.

Huber, G.

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B15(3), 1052–1060 (1998).
[CrossRef]

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

Jensen, T.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

V. Ostroumov, T. Jensen, J. P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B15(3), 1052–1060 (1998).
[CrossRef]

Jenssen, H. P.

Jiang, J. M.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

Jiang, M. H.

Johnson, S. A.

S. A. Johnson, H. G. Freie, A. L. Schawlow, and W. M. Yen, “Thermal shifts in the energy levels of LaF3:Nd3+,” J. Opt. Soc. Am. B57(6), 734–737 (1967).
[CrossRef]

Kean, P. N.

Keller, U.

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Krupke, W. F.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
[CrossRef]

Kück, S.

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

Kushida, T.

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
[CrossRef]

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ration for Nd3+ in Yttrium Aluminum Garnet,” Phys. Rev.167(2), 289–291 (1968).
[CrossRef]

Lagatsky, A. A.

Li, J.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

Li, S. G.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

Li, T.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

T. Li, S. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. Yang, “Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser,” J. Opt. Soc. Am. B26(12), 2445–2448 (2009).
[CrossRef]

Loh, K. P.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Luo, H.

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

Marcos, H. M.

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ration for Nd3+ in Yttrium Aluminum Garnet,” Phys. Rev.167(2), 289–291 (1968).
[CrossRef]

Merino, R. I.

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

Meyn, J. P.

Ni, Z.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Noginov, M. A.

O'Connor, J. R.

J. R. O'Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett.9(11), 407–409 (1966).
[CrossRef]

Orera, V. M.

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

Ostroumov, V.

Pardo, J. A.

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

Qin, L. J.

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

Riseberg, L. A.

L. A. Riseberg, R. M. Brown, and W. C. Holton, “New class of intermediate-gain laser materials: mixed garnets,” Appl. Phys. Lett.23(3), 127–129 (1973).
[CrossRef]

L. A. Riseberg and W. C. Holton, “Nd ion site distribution and spectral line broadening in YAlG:Lu,Nd laser materials,” J. Appl. Phys.43(4), 1876–1878 (1972).
[CrossRef]

Sardar, D. K.

D. K. Sardar and R. M. Yow, “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12,” Opt. Mater.10(3), 191–199 (1998).
[CrossRef]

D. K. Sardar and S. C. Stubblefield, “Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host,” J. Appl. Phys.83(3), 1195–1199 (1998).
[CrossRef]

Schawlow, A. L.

S. A. Johnson, H. G. Freie, A. L. Schawlow, and W. M. Yen, “Thermal shifts in the energy levels of LaF3:Nd3+,” J. Opt. Soc. Am. B57(6), 734–737 (1967).
[CrossRef]

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-Induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Scott, W. C.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-Induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Shan, C. X.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

Shao, Z. S.

Shen, Z. X.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Sibbett, W.

Spence, D. E.

Stetser, D. A.

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966).
[CrossRef]

Stubblefield, S. C.

D. K. Sardar and S. C. Stubblefield, “Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host,” J. Appl. Phys.83(3), 1195–1199 (1998).
[CrossRef]

Sun, X.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Tang, D. Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

Tonelli, M.

Tucker, A. W.

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
[CrossRef]

Turri, G.

Wang, J. Y.

Wang, M. J.

Wang, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wang, Z. P.

Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
[CrossRef]

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, and M. H. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett.32(15), 2152–2154 (2007).
[CrossRef] [PubMed]

Weber, M. J.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
[CrossRef]

Xie, G. Q.

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

Xu, J. Q.

Xu, L.

Xu, X. G.

Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
[CrossRef]

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Yan, Y.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, K.

Yen, W. M.

S. A. Johnson, H. G. Freie, A. L. Schawlow, and W. M. Yen, “Thermal shifts in the energy levels of LaF3:Nd3+,” J. Opt. Soc. Am. B57(6), 734–737 (1967).
[CrossRef]

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-Induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

Yow, R. M.

D. K. Sardar and R. M. Yow, “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12,” Opt. Mater.10(3), 191–199 (1998).
[CrossRef]

Yu, H. H.

Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
[CrossRef]

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, and M. H. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett.32(15), 2152–2154 (2007).
[CrossRef] [PubMed]

Yu, Y. G.

Zhang, H.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, H. J.

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, Z. S. Shao, and M. H. Jiang, “Enhancement of passive Q-switching performance with mixed Nd:LuxGd1-xVO4 laser crystals,” Opt. Lett.32(15), 2152–2154 (2007).
[CrossRef] [PubMed]

Zhang, S. Y.

Zhao, B.

Zhao, J.

Zhao, S.

Zhao, Y. G.

Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
[CrossRef]

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Zhuang, S. D.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Zhuo, Z.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

T. Li, S. Zhao, B. Zhao, J. Zhao, Z. Zhuo, and K. Yang, “Passively mode-locked performance of a diode-pumped Nd:Lu0.15Y0.85VO4 laser,” J. Opt. Soc. Am. B26(12), 2445–2448 (2009).
[CrossRef]

Adv. Funct. Mater.

Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

AIP Advances.

L. Guo, Z. P. Wang, H. H. Yu, D. W. Hu, S. D. Zhuang, L. J. Chen, Y. G. Zhao, X. Sun, and X. G. Xu, “Thermal, spectroscopic, and laser characterization of Nd:LuxY1-xVO4 series crystals,” AIP Advances.1(4), 042143 (2011).
[CrossRef]

Appl. Phys. B

L. Fornasiero, S. Kück, T. Jensen, G. Huber, and B. H. T. Chai, “Excited state absorption and stimulated emission of Nd3+ in crystals. Part2: YVO4, GdVO4, and Sr5(PO4)3F,” Appl. Phys. B67(5), 549–553 (1998).
[CrossRef]

M. Haiml, R. Grange, and U. Keller, “Optical characterization of semiconductor saturable absorbers,” Appl. Phys. B79(3), 331–339 (2004).
[CrossRef]

Appl. Phys. Lett.

L. A. Riseberg, R. M. Brown, and W. C. Holton, “New class of intermediate-gain laser materials: mixed garnets,” Appl. Phys. Lett.23(3), 127–129 (1973).
[CrossRef]

A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett.8(7), 174–176 (1966).
[CrossRef]

J. R. O'Connor, “Unusual crystal-field energy levels and efficient laser properties of YVO4:Nd,” Appl. Phys. Lett.9(11), 407–409 (1966).
[CrossRef]

IEEE J. Quantum Electron.

D. W. Hall, R. A. Haas, W. F. Krupke, and M. J. Weber, “Spectral and polarization hole burning in Neodymium glass lasers,” IEEE J. Quantum Electron.19(11), 1704–1717 (1983).
[CrossRef]

IEEE Photon. J.

Y. G. Zhao, Z. P. Wang, H. H. Yu, and X. G. Xu, “High-pulse-performance diode-pumped actively Q-switched c-cut Nd:Lu0.1Y0.9VO4 self-Raman laser,” IEEE Photon. J.4(6), 2285–2291 (2012).
[CrossRef]

J. Appl. Phys.

D. K. Sardar and S. C. Stubblefield, “Temperature dependencies of linewidths, positions, and line shifts of spectral transitions of trivalent neodymium ions in barium magnesium yttrium germanate laser host,” J. Appl. Phys.83(3), 1195–1199 (1998).
[CrossRef]

L. A. Riseberg and W. C. Holton, “Nd ion site distribution and spectral line broadening in YAlG:Lu,Nd laser materials,” J. Appl. Phys.43(4), 1876–1878 (1972).
[CrossRef]

A. W. Tucker, M. Birnbaum, C. L. Fincher, and L. G. Deshazer, “Continuous-wave operation of Nd:YVO4 at 1.06 and 1.34 μm,” J. Appl. Phys.47(1), 232–234 (1976).
[CrossRef]

J. Lumin.

I. García-Rubio, J. A. Pardo, R. I. Merino, R. Cases, and V. M. Orera, “Concentration and temperature dependence of Nd3+ luminescence in LaGaO3,” J. Lumin.86(2), 147–153 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

Z. Zhuo, S. G. Li, T. Li, J. M. Jiang, C. X. Shan, J. Li, B. Zhao, and J. Z. Chen, “Study of the laser performance of a novel mixed Nd:Y0.8Lu0.2VO4 crystal,” Laser Phys. Lett.7(2), 116–119 (2010).
[CrossRef]

G. Q. Xie, D. Y. Tang, H. Luo, H. H. Yu, H. J. Zhang, and L. J. Qin, “High-power passive mode locking of a compact diode-pumped Nd:LuVO4 laser,” Laser Phys. Lett.5(9), 647–650 (2008).
[CrossRef]

Nature

U. Keller, “Recent developments in compact ultrafast lasers,” Nature424(6950), 831–838 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

D. K. Sardar and R. M. Yow, “Stark components of 4F3/2, 4I9/2 and 4I11/2 manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater.14(1), 5–11 (2000).
[CrossRef]

D. K. Sardar and R. M. Yow, “Optical characterization of inter-Stark energy levels and effects of temperature on sharp emission lines of Nd3+ in CaZn2Y2Ge3O12,” Opt. Mater.10(3), 191–199 (1998).
[CrossRef]

Phys. Rev.

W. M. Yen, W. C. Scott, and A. L. Schawlow, “Phonon-Induced relaxation in excited optical states of trivalent praseodymium in LaF3,” Phys. Rev.136(1A), A271–A283 (1964).
[CrossRef]

T. Kushida, H. M. Marcos, and J. E. Geusic, “Laser transition cross section and fluorescence branching ration for Nd3+ in Yttrium Aluminum Garnet,” Phys. Rev.167(2), 289–291 (1968).
[CrossRef]

T. Kushida, “Linewidths and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphate,” Phys. Rev.185(2), 500–508 (1969).
[CrossRef]

Other

I. Musgrave, “Study of the physics of the power-scaling of end-pumped solid-state laser sources based on Nd:YVO4,” University of Southampton PhD thesis, pp. 50−79 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Lifetime decay profile of Nd:YVO4 at a) 77 K, τ = 75 μs, b) 230 K, τ = 87 μs, c) 300 K, τ = 92 μs. Inset: fluorescence lifetime of Nd:LuxY1-xVO4 (x = 0.26, 0.41, 0.61, 0.8 and 1) at different temperatures.

Fig. 2
Fig. 2

4F3/24I11/2, π-polarization emission spectra of a) Nd:Lu0.26Y0.74VO4, b) Nd:Lu0.61Y0.39VO4, c) Nd:Lu0.8Y0.2VO4 at different temperatures.

Fig. 3
Fig. 3

Full width at half maximum (left) and the peak wavelength (right) of Nd:LuxY1-xVO4 (x = 0, 0.26, 0.41, 0.61, 0.8 and 1) crystals verses Lu composition for π- and σ-polarization at different temperatures.

Fig. 4
Fig. 4

Emission spectra of Nd3+ 4F3/24I11/2 transition in Nd:LuxY1-xVO4 (x = 0, 0.26, 0.61, 0.8 and 1) for: a) π-polarization at 77 K, b) π-polarization at 300 K, c) σ-polarization at 77 K, and d) σ-polarization at 300 K.

Fig. 5
Fig. 5

a) schematic of the laser setup, b) Variation of the CWML output power versus the absorbed pump power, c) pulse train of Nd:Lu0.61Y0.39VO4 crystal recorded in 20 ns and 1 µs per division (div) time scales, d) Normalized autocorrelation pulse trace for 8 ps duration. Insert: the corresponding laser spectrum of the CWML.

Tables (1)

Tables Icon

Table 1 Parameters of the spectrum and CWML laser for the Nd:LuxY1-xVO4 crystals.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ Γ (T) =Δ Γ D(T) +Δ Γ R(T)
Δ Γ I =Δ Γ S +Δ Γ O +Δ Γ M
Δ Γ I,Mix =Δ Γ (T) +Δ Γ I +Δ Γ r

Metrics