Abstract

We present a technique to measure the refractive index profile of direct laser written waveguides. This method has the potential for straightforward implementation in an existing laser fabrication system. Quantitative phase microscopy, based on the Transfer of Intensity equation, is used to analyse waveguides fabricated with an ultrashort pulsed laser embedded several hundred micron below the surface of fused silica. It is shown that the cumulative phase change induced by the waveguide perpendicular to its axis may be monitored in real-time during the fabrication process. Results are verified through comparison with interferometry. Tomographic measurements using illumination from a high numerical aperture condenser lens are used to infer the waveguide cross-section. Results are compared with measurements of the waveguide cross-section from a third harmonic generation microscope.

© 2013 osa

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
    [CrossRef]
  2. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  3. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt.11, 013001 (2009).
    [CrossRef]
  4. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt.37, 7268–7272 (1998).
    [CrossRef]
  5. M. Will, S. Nolte, B. N. Chichkov, and A. Tünnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt.41, 4360–4364 (2002).
    [CrossRef] [PubMed]
  6. R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, “Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures,” Opt. Express11, 775–781 (2003).
    [CrossRef] [PubMed]
  7. A. Streltsov and N. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26, 42–43 (2001).
    [CrossRef]
  8. C. Florea and K. A. Winick, “Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses,” J. Lightwave Technol.21, 246–253 (2003).
    [CrossRef]
  9. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett.26, 1516–1518 (2001).
    [CrossRef]
  10. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express13, 612–620 (2005).
    [CrossRef] [PubMed]
  11. A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27, 2061–2063 (2002).
    [CrossRef]
  12. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800nm,” Appl. Opt.49, 1938–1950 (2010).
    [CrossRef] [PubMed]
  13. P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat.33, 872–876 (2011).
    [CrossRef]
  14. S. H. Messaddeq, J. P. Brub, M. Bernier, I. Skripachev, R. Valle, and Y. Messaddeq, “Study of the photosensitivity of ges binary glasses to 800nm femtosecond pulses,” Opt. Express20, 2824–2831 (2012).
    [CrossRef] [PubMed]
  15. M. R. Teague, “Irradiance moments: their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am.72, 1199–1209 (1982).
    [CrossRef]
  16. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am.73, 1434–1441 (1983).
    [CrossRef]
  17. K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys.52, 55–69 (2011).
    [CrossRef]
  18. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
    [CrossRef] [PubMed]
  19. D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586 (1998).
    [CrossRef]
  20. D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).
  21. C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16, 5481–5492 (2008).
    [CrossRef] [PubMed]
  22. P. S. Salter and M. J. Booth, “Dynamic optical methods for direct laser written waveguides,” Proc. SPIE8613, 86130A (2013).
    [CrossRef]
  23. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. DeSilvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μ m by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
    [CrossRef]
  24. F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett.35, 1106–1108 (2010).
    [CrossRef] [PubMed]
  25. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003).
    [CrossRef] [PubMed]
  26. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
    [CrossRef] [PubMed]
  27. P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012).
    [CrossRef] [PubMed]
  28. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” Journal of Microscopy192, 90–98 (1998).
    [CrossRef]
  29. L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20, 24103–24114 (2012).
    [CrossRef] [PubMed]
  30. J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express21, 13522–13532 (2013).
    [CrossRef] [PubMed]
  31. A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun.175, 329–336 (2000).
    [CrossRef]
  32. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
    [CrossRef] [PubMed]
  33. G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth, “Three-dimensional imaging of direct-written photonic structures,” Opt. Lett.36, 695–697 (2011).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

2011 (3)

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat.33, 872–876 (2011).
[CrossRef]

G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth, “Three-dimensional imaging of direct-written photonic structures,” Opt. Lett.36, 695–697 (2011).
[CrossRef] [PubMed]

K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys.52, 55–69 (2011).
[CrossRef]

2010 (2)

2009 (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt.11, 013001 (2009).
[CrossRef]

2008 (2)

2007 (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

2006 (1)

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

2005 (2)

2003 (4)

2002 (3)

2001 (2)

2000 (1)

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun.175, 329–336 (2000).
[CrossRef]

1998 (3)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” Journal of Microscopy192, 90–98 (1998).
[CrossRef]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586 (1998).
[CrossRef]

P. Oberson, B. Gisin, B. Huttner, and N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt.37, 7268–7272 (1998).
[CrossRef]

1996 (1)

1983 (1)

1982 (1)

Aiello, L.

Aitchison, J. S.

Allsop, T.

Ampem-Lassen, E.

Ams, M.

An, R.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Audouard, E.

Badizadegan, K.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Barbieri, M.

Barty, A.

Baxter, G. W.

Bennion, I.

Bernier, M.

Bhardwaj, V. R.

Booth, M.

Booth, M. J.

Borrelli, N.

Brub, J. P.

Bychkov, E.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat.33, 872–876 (2011).
[CrossRef]

Cerullo, G.

Cheng, Y.

Chichkov, B. N.

Chiodo, N.

Choi, W.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Coq, D. L.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat.33, 872–876 (2011).
[CrossRef]

Corkum, P. B.

Dasari, R. R.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Davis, K. M.

DeSilvestri, S.

Dou, Y.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Dragomir, N. M.

Dubov, M.

Fang-Yen, C.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Feld, M. S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Fernandes, L. A.

Ferraro, P.

Finizio, A.

Florea, C.

Fujimoto, J. G.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Gisin, B.

Gisin, N.

Gong, Q.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Grenier, J. R.

Hartl, I.

He, F.

Herman, P. R.

Hirao, K.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

Hnatovsky, C.

Humphreys, P. C.

Huntington, S. T.

Huot, N.

Huttner, B.

Ippen, E. P.

Jesacher, A.

Jin, X.-M.

Kawachi, M.

Kazansky, P. G.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Kolthammer, W. S.

Kowalevicz, A. M.

Langford, N. K.

Laporta, P.

Li, Y.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Liu, D.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Marangoni, M.

Marques, P. V. S.

Marshall, G. D.

Maselli, V.

Masselin, P.

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat.33, 872–876 (2011).
[CrossRef]

Masuda, M.

Mauclair, C.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Mehandale, M.

Mermillod-Blondin, A.

Messaddeq, S. H.

Messaddeq, Y.

Metcalf, B. J.

Mezentsev, V.

Midorikawa, K.

Minoshima, K.

Miura, K.

Moore, M.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” Journal of Microscopy192, 90–98 (1998).
[CrossRef]

Ni, J.

Nicola, S. D.

Nolte, S.

Nugent, K. A.

K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys.52, 55–69 (2011).
[CrossRef]

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27, 2061–2063 (2002).
[CrossRef]

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun.175, 329–336 (2000).
[CrossRef]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586 (1998).
[CrossRef]

Oberson, P.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Osellame, R.

Paganin, D.

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun.175, 329–336 (2000).
[CrossRef]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586 (1998).
[CrossRef]

Pierattini, G.

Polli, D.

Qiu, J.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Ramponi, R.

Rayner, D. M.

Roberts, A.

Salter, P. S.

Shihoyama, K.

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

Simmonds, R. D.

Simova, E.

Skripachev, I.

Spence, D. J.

Spring, J. B.

Stoian, R.

Streltsov, A.

Sugimoto, N.

Sugioka, K.

Taccheo, S.

Taylor, R. S.

Teague, M. R.

Thayil, A.

Thomas-Peter, N.

Toyoda, K.

Tünnermann, A.

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt.11, 013001 (2009).
[CrossRef]

Valle, R.

Walmsley, I. A.

Will, M.

Wilson, T.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” Journal of Microscopy192, 90–98 (1998).
[CrossRef]

Winick, K. A.

Withford, M. J.

Xiong, H.

Xu, H.

Xu, Z.

Yang, H.

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Yin, A.

Zavelani-Rossi, M.

Appl. Opt. (3)

Appl. Phys. A (1)

D. Liu, Y. Li, R. An, Y. Dou, H. Yang, and Q. Gong, “Influence of focusing depth on the microfabrication of waveguides inside silica glass by femtosecond laser direct writing,” Appl. Phys. A84, (2006), 257–260 (2006).

Contemp. Phys. (1)

K. A. Nugent, “The measurement of phase through the propagation of intensity: an introduction,” Contemp. Phys.52, 55–69 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt.11, 013001 (2009).
[CrossRef]

J. Opt. Soc. Am. (2)

Journal of Microscopy (1)

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” Journal of Microscopy192, 90–98 (1998).
[CrossRef]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods4, 717–719 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2, 219–225 (2008).
[CrossRef]

Opt. Commun. (1)

A. Barty, K. A. Nugent, A. Roberts, and D. Paganin, “Quantitative phase tomography,” Opt. Commun.175, 329–336 (2000).
[CrossRef]

Opt. Express (7)

L. A. Fernandes, J. R. Grenier, P. R. Herman, J. S. Aitchison, and P. V. S. Marques, “Stress induced birefringence tuning in femtosecond laser fabricated waveguides in fused silica,” Opt. Express20, 24103–24114 (2012).
[CrossRef] [PubMed]

J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express21, 13522–13532 (2013).
[CrossRef] [PubMed]

C. Mauclair, A. Mermillod-Blondin, N. Huot, E. Audouard, and R. Stoian, “Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction,” Opt. Express16, 5481–5492 (2008).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express13, 5676–5681 (2005).
[CrossRef] [PubMed]

R. S. Taylor, C. Hnatovsky, E. Simova, D. M. Rayner, M. Mehandale, V. R. Bhardwaj, and P. B. Corkum, “Ultra-high resolution index of refraction profiles of femtosecond laser modified silica structures,” Opt. Express11, 775–781 (2003).
[CrossRef] [PubMed]

S. H. Messaddeq, J. P. Brub, M. Bernier, I. Skripachev, R. Valle, and Y. Messaddeq, “Study of the photosensitivity of ges binary glasses to 800nm femtosecond pulses,” Opt. Express20, 2824–2831 (2012).
[CrossRef] [PubMed]

R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. D. Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity ti:sapphire femtosecond oscillator,” Opt. Express13, 612–620 (2005).
[CrossRef] [PubMed]

Opt. Lett. (9)

A. Roberts, E. Ampem-Lassen, A. Barty, K. A. Nugent, G. W. Baxter, N. M. Dragomir, and S. T. Huntington, “Refractive-index profiling of optical fibers with axial symmetry by use of quantitative phase microscopy,” Opt. Lett.27, 2061–2063 (2002).
[CrossRef]

A. Streltsov and N. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett.26, 42–43 (2001).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.21, 1729–1731 (1996).
[CrossRef] [PubMed]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett.26, 1516–1518 (2001).
[CrossRef]

P. S. Salter, A. Jesacher, J. B. Spring, B. J. Metcalf, N. Thomas-Peter, R. D. Simmonds, N. K. Langford, I. A. Walmsley, and M. J. Booth, “Adaptive slit beam shaping for direct laser written waveguides,” Opt. Lett.37, 470–472 (2012).
[CrossRef] [PubMed]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. DeSilvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μ m by astigmatic beam focusing,” Opt. Lett.27, 1938–1940 (2002).
[CrossRef]

F. He, H. Xu, Y. Cheng, J. Ni, H. Xiong, Z. Xu, K. Sugioka, and K. Midorikawa, “Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses,” Opt. Lett.35, 1106–1108 (2010).
[CrossRef] [PubMed]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett.28, 55–57 (2003).
[CrossRef] [PubMed]

G. D. Marshall, A. Jesacher, A. Thayil, M. J. Withford, and M. Booth, “Three-dimensional imaging of direct-written photonic structures,” Opt. Lett.36, 695–697 (2011).
[CrossRef] [PubMed]

Opt. Mat. (1)

P. Masselin, D. L. Coq, and E. Bychkov, “Refractive index variations induced by femtosecond laser direct writing in the bulk of as2s3 glass at high repetition rate,” Opt. Mat.33, 872–876 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses,” Phys. Rev. Lett.91, 247405 (2003).
[CrossRef] [PubMed]

D. Paganin and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett.80, 2586 (1998).
[CrossRef]

Proc. SPIE (1)

P. S. Salter and M. J. Booth, “Dynamic optical methods for direct laser written waveguides,” Proc. SPIE8613, 86130A (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of TIE and interferometry. (a) integrated optical path lengths across sections through two exemplary waveguides; (b) peak values and widths (1/e2) of Gaussians that were fitted to nine different waveguide profiles; the blue lines mark a slope of one.

Fig. 2
Fig. 2

Gaussian fit parameters for a typical waveguide; the TIE measurement was conducted for different defocus values Δz. An optimal range for Δz exists between 2 and 6 micrometers.

Fig. 3
Fig. 3

(a) Experimental setup allowing online acquisition of waveguide phase profiles during fabrication. (b) An example defocus image captured for the waveguide and, for comparison, an in focus image (c). Approximating the intensity distribution in (c) as a constant, the phase profile of the waveguide may be estimated (d). The increase in optical path length for the waveguide structure with multiple passes of the fabrication focus (e).

Fig. 4
Fig. 4

(a) Experimental schematic for tomographic phase imaging of DLW waveguides. (b) Sample retrieved plots of the OPL for waveguides A and B for illumination at different incident angles. Measurements of the characteristic waveguide width σ (c) and peak OPL (d) as a function of the illumination direction. Fits to the data are shown as dashed red curves providing a measure of waveguide ellipticity e (as denoted in the caption). (e) The waveguide cross-sections estimated from the tomographic measurements and measured using a third harmonic generation (THG) microscope.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d I ( x ) d z = λ 0 2 π n d d x [ I ( x ) d d x ϕ ( x ) ] .
ϕ ( x ) = 2 π n λ 0 ( 1 I ( x ) d I ( x ) d z d x ) d x .

Metrics