Abstract

The method of elastic recoil detection (ERD) has been utilized to analyze the actual hydrogen concentration in hydrogenated silicon thin films and has been demonstrated to provide more stable and accurate analysis for quantification of the hydrogen concentration than does Fourier Transform Infrared Spectroscopy. In order to realize the quality of thin films, spectroscopic ellipsometry and the applied effective medium approximation (EMA) theory of the Maxwell-Garnett and Bruggeman models are applied to deducing the effective refractive index of the films. The relative void fractions corresponding to amorphous silicon films with lowest hydrogen flow could be obtained based on the EMA theory. Therefore, this study found an important linear relationship between the hydrogen concentration and structural relaxation as a consequence of the void fraction induced by the hydrogen flow.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rolf, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Weinheim: Wiley-VCH, 2003).
  2. S. Klein, T. Repmann, and T. Brammer, “Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,” Sol. Energy77(6), 893–908 (2004).
    [CrossRef]
  3. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).
  4. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
    [CrossRef]
  5. M. Katiyar and J. R. Abelson, “Investigation of hydrogen plasma induced phase transition from a-Si:H to mc-Si:H using real time infrared spectroscopy,” Mater. Sci. Eng. A304–306, 349–352 (2001).
    [CrossRef]
  6. T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
    [CrossRef] [PubMed]
  7. Y. Kuo, Thin Film Transistors-Material and Processes, Volume 1 (Texas A&M University, U.S.A., 2004).
  8. R. E. J. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic Publishers, 1998).
  9. N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
    [CrossRef]
  10. C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
    [CrossRef]
  11. I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
    [CrossRef]
  12. Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
    [CrossRef]
  13. R. Garcia-Hernansanz, E. Garcia-Hemme, D. Pastor, A. del Prado, I. Martil, G. Gonzalez-Diaz, J. Olea, and D. Pastor, “Hydrogenated amorphous silicon deposited by high pressure sputtering for HIT solar cells,” in Proceedings of IEEE conference on Electron Devices (CDE), (Institute of Electrical and Electronics Engineers, New York, 2013), pp. 337–340.
  14. A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).
  15. A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
    [CrossRef]
  16. D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct.23(3–4), 567–573 (1998).
    [CrossRef]
  17. S. Torquato and S. Hyun, “Effective-medium approximation for composite media: Realizable single-scale dispersions,” J. Appl. Phys.89(3), 1725–1729 (2001).
    [CrossRef]
  18. C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
    [CrossRef]
  19. D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
    [CrossRef]
  20. H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
    [CrossRef]
  21. V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
    [CrossRef]
  22. P. Wurfel, Physics of Solar Cells from Principles to New Concepts (Wiley-VCH Verlag GmbH, 2005).
  23. S. C. Saha, A. K. Barua, and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films,” J. Appl. Phys.74(9), 5561–5568 (1993).
    [CrossRef]
  24. W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
    [CrossRef]
  25. H. M. Brodsky, M. Cardona, and J. J. Couomoet, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B16(8), 3556–3571 (1977).
    [CrossRef]
  26. P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys.48(12), 5227–5236 (1977).
    [CrossRef]
  27. M. Cardona, “Vibrational spectra of hydrogen in silicon and germanium,” Phys. Status Solidi B118(2), 463–481 (1983).
    [CrossRef]
  28. R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182(4-6), 273–279 (2000).
    [CrossRef]
  29. S. H. Chen, H. W. Wang, and T. W. Chang, “Absorption coefficient modeling of microcrystalline silicon thin film using Maxwell-Garnett effective medium theory,” Opt. Express20(S2Suppl 2), A197–A204 (2012).
    [CrossRef] [PubMed]
  30. A. Bittar, S. Berthier, and J. Lafait, “Non metal-metal transition in Bruggeman optical theory for inhomogeneous media,” J. Phys.45(3), 623–631 (1984).
    [CrossRef]
  31. A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter34(10), 7018–7026 (1986).
    [CrossRef] [PubMed]
  32. J. M. Seo, M. C. Jeong, and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth295(2), 119–123 (2006).
    [CrossRef]
  33. A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
    [CrossRef]

2013 (2)

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
[CrossRef]

2012 (7)

N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
[CrossRef]

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

S. H. Chen, H. W. Wang, and T. W. Chang, “Absorption coefficient modeling of microcrystalline silicon thin film using Maxwell-Garnett effective medium theory,” Opt. Express20(S2Suppl 2), A197–A204 (2012).
[CrossRef] [PubMed]

2006 (3)

J. M. Seo, M. C. Jeong, and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth295(2), 119–123 (2006).
[CrossRef]

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

2005 (1)

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

2004 (1)

S. Klein, T. Repmann, and T. Brammer, “Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,” Sol. Energy77(6), 893–908 (2004).
[CrossRef]

2002 (1)

T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
[CrossRef] [PubMed]

2001 (2)

M. Katiyar and J. R. Abelson, “Investigation of hydrogen plasma induced phase transition from a-Si:H to mc-Si:H using real time infrared spectroscopy,” Mater. Sci. Eng. A304–306, 349–352 (2001).
[CrossRef]

S. Torquato and S. Hyun, “Effective-medium approximation for composite media: Realizable single-scale dispersions,” J. Appl. Phys.89(3), 1725–1729 (2001).
[CrossRef]

2000 (2)

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182(4-6), 273–279 (2000).
[CrossRef]

1998 (1)

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct.23(3–4), 567–573 (1998).
[CrossRef]

1993 (1)

S. C. Saha, A. K. Barua, and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films,” J. Appl. Phys.74(9), 5561–5568 (1993).
[CrossRef]

1991 (1)

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

1986 (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

1984 (1)

A. Bittar, S. Berthier, and J. Lafait, “Non metal-metal transition in Bruggeman optical theory for inhomogeneous media,” J. Phys.45(3), 623–631 (1984).
[CrossRef]

1983 (1)

M. Cardona, “Vibrational spectra of hydrogen in silicon and germanium,” Phys. Status Solidi B118(2), 463–481 (1983).
[CrossRef]

1977 (2)

H. M. Brodsky, M. Cardona, and J. J. Couomoet, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B16(8), 3556–3571 (1977).
[CrossRef]

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys.48(12), 5227–5236 (1977).
[CrossRef]

Abelson, J. R.

M. Katiyar and J. R. Abelson, “Investigation of hydrogen plasma induced phase transition from a-Si:H to mc-Si:H using real time infrared spectroscopy,” Mater. Sci. Eng. A304–306, 349–352 (2001).
[CrossRef]

Adnan, S.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Antoni, F.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Arnoldbik, W. M.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

Awais, A.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Balberg, I.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

Barua, A. K.

S. C. Saha, A. K. Barua, and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films,” J. Appl. Phys.74(9), 5561–5568 (1993).
[CrossRef]

Beke, D. L.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Berthier, S.

A. Bittar, S. Berthier, and J. Lafait, “Non metal-metal transition in Bruggeman optical theory for inhomogeneous media,” J. Phys.45(3), 623–631 (1984).
[CrossRef]

Bittar, A.

A. Bittar, S. Berthier, and J. Lafait, “Non metal-metal transition in Bruggeman optical theory for inhomogeneous media,” J. Phys.45(3), 623–631 (1984).
[CrossRef]

Bloomer, I.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Bongiorno, C.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Botti, S.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Boyen, H. G.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Brammer, T.

S. Klein, T. Repmann, and T. Brammer, “Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,” Sol. Energy77(6), 893–908 (2004).
[CrossRef]

Brodsky, H. M.

H. M. Brodsky, M. Cardona, and J. J. Couomoet, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B16(8), 3556–3571 (1977).
[CrossRef]

Brulin, Q.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Bureau, H.

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).

Carapella, J.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

Cardona, M.

M. Cardona, “Vibrational spectra of hydrogen in silicon and germanium,” Phys. Status Solidi B118(2), 463–481 (1983).
[CrossRef]

H. M. Brodsky, M. Cardona, and J. J. Couomoet, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B16(8), 3556–3571 (1977).
[CrossRef]

Carius, R.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Carlson, D. E.

T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
[CrossRef] [PubMed]

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys.48(12), 5227–5236 (1977).
[CrossRef]

Catania, G.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Cayron, C.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Ceh, M.

D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
[CrossRef]

Chaabane, N.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Chang, T. W.

Chen, S. H.

Couomoet, J. J.

H. M. Brodsky, M. Cardona, and J. J. Couomoet, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B16(8), 3556–3571 (1977).
[CrossRef]

Crandall, R. S.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

Crupi, I.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Csik, A.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
[CrossRef]

Deng, X.

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

Di Marco, S.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Du, W.

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

Erdelyi, Z.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Faisal, Q. J.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Finger, F.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Fogarassy, E.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Forouhi, A. R.

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Foti, M.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Frigeri, C.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
[CrossRef]

Ganguly, G.

T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
[CrossRef] [PubMed]

Garozzo, C.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Goldbach, H. D.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

Gracina, D.

D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
[CrossRef]

Grasso, A.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Hapke, P.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Hassouni, K.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Hirschmann, M. M.

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).

Houben, L.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Hyun, S.

S. Torquato and S. Hyun, “Effective-medium approximation for composite media: Realizable single-scale dispersions,” J. Appl. Phys.89(3), 1725–1729 (2001).
[CrossRef]

Javaid, H.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Jeong, M. C.

J. M. Seo, M. C. Jeong, and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth295(2), 119–123 (2006).
[CrossRef]

Juraic, K.

D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
[CrossRef]

Kalache, B.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Katiyar, M.

M. Katiyar and J. R. Abelson, “Investigation of hydrogen plasma induced phase transition from a-Si:H to mc-Si:H using real time infrared spectroscopy,” Mater. Sci. Eng. A304–306, 349–352 (2001).
[CrossRef]

Khanh, N. Q.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Khánh, N. Q.

N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
[CrossRef]

Khurram, A. A.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Klein, S.

S. Klein, T. Repmann, and T. Brammer, “Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,” Sol. Energy77(6), 893–908 (2004).
[CrossRef]

Kluth, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Lafait, J.

A. Bittar, S. Berthier, and J. Lafait, “Non metal-metal transition in Bruggeman optical theory for inhomogeneous media,” J. Phys.45(3), 623–631 (1984).
[CrossRef]

Lambertz, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Leroy, Y.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Liao, X.

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

Lombardo, S.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Mahan, A. H.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

Marco, S. D.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Mermet, F.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Mirabella, S.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Muck, A.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Mukhtiar, A.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Myoung, J. M.

J. M. Seo, M. C. Jeong, and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth295(2), 119–123 (2006).
[CrossRef]

Nasi, L.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Naveed, A.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Nelson, B. P.

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

Novikova, T.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Piro, A. M.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Povolny, H.

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

Prathap, P.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Priolo, F.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Puglisi, R. A.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Raepsaet, C.

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).

Ray, S.

S. C. Saha, A. K. Barua, and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films,” J. Appl. Phys.74(9), 5561–5568 (1993).
[CrossRef]

Rech, B.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Reining, L.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Reitano, R.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Repmann, T.

S. Klein, T. Repmann, and T. Brammer, “Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,” Sol. Energy77(6), 893–908 (2004).
[CrossRef]

Roca i Cabarrocas, P.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Ruffino, F.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Ruggeri, F. S.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Ruppin, R.

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182(4-6), 273–279 (2000).
[CrossRef]

Saha, S. C.

S. C. Saha, A. K. Barua, and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films,” J. Appl. Phys.74(9), 5561–5568 (1993).
[CrossRef]

Said-Bacar, Z.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Schropp, R. E. I.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

Seo, J. M.

J. M. Seo, M. C. Jeong, and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth295(2), 119–123 (2006).
[CrossRef]

Serenyi, M.

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Serényi, M.

N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
[CrossRef]

Siketic, Z.

D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
[CrossRef]

Simone, F.

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Slaoui, A.

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

Sobia, A. R.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Spinella, C.

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

Stroud, D.

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct.23(3–4), 567–573 (1998).
[CrossRef]

Su, T.

T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
[CrossRef] [PubMed]

Taylor, P. C.

T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
[CrossRef] [PubMed]

Torquato, S.

S. Torquato and S. Hyun, “Effective-medium approximation for composite media: Realizable single-scale dispersions,” J. Appl. Phys.89(3), 1725–1729 (2001).
[CrossRef]

Turab, A. A.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Vach, H.

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

van der Werf, C. H. M.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

Verlaan, V.

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

Vetterl, O.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Wagner, H.

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Wang, H. W.

Withers, A. C.

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).

Wronski, C. R.

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys.48(12), 5227–5236 (1977).
[CrossRef]

Yang, X.

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

Yu, G. J.

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

Zanzucchi, P. J.

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys.48(12), 5227–5236 (1977).
[CrossRef]

Appl. Surf. Sci. (3)

C. Frigeri, M. Serenyi, N. Q. Khanh, A. Csik, L. Nasi, Z. Erdelyi, D. L. Beke, and H. G. Boyen, “Hydrogen behaviour in amorphous Si/Ge nano-structures after annealing,” Appl. Surf. Sci.267, 30–34 (2013).
[CrossRef]

Z. Said-Bacar, P. Prathap, C. Cayron, F. Mermet, Y. Leroy, F. Antoni, A. Slaoui, and E. Fogarassy, “CW laser induced crystallization of thin amorphous silicon films deposited by EBE and PECVD,” Appl. Surf. Sci.258(23), 9359–9365 (2012).
[CrossRef]

D. Gracina, Z. Siketic, K. Juraic, and M. Ceh, “Analysis of amorphous-nanocrystalline silicon thin films by time-of-flight elastic recoil detection analysis and high-resolution electron microscopy,” Appl. Surf. Sci.275, 19–22 (2013).
[CrossRef]

Chem. Geol. (1)

A. C. Withers, H. Bureau, C. Raepsaet, and M. M. Hirschmann, “Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine,” Chem. Geol.334, 92–98 (2012).

Comput. Mater. Sci. (1)

H. Vach, Q. Brulin, N. Chaabane, T. Novikova, P. Roca i Cabarrocas, B. Kalache, K. Hassouni, S. Botti, and L. Reining, “Growth dynamics of hydrogenated silicon nanoparticles under realistic conditions of a plasma reactor,” Comput. Mater. Sci.35(3), 216–222 (2006).
[CrossRef]

Curr. Appl. Phys. (1)

A. R. Sobia, S. Adnan, A. Mukhtiar, A. A. Khurram, A. A. Turab, A. Awais, A. Naveed, Q. J. Faisal, H. Javaid, and G. J. Yu, “Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films,” Curr. Appl. Phys.12(3), 712–717 (2012).
[CrossRef]

J. Appl. Phys. (5)

S. Torquato and S. Hyun, “Effective-medium approximation for composite media: Realizable single-scale dispersions,” J. Appl. Phys.89(3), 1725–1729 (2001).
[CrossRef]

C. Garozzo, R. A. Puglisi, C. Bongiorno, C. Spinella, S. Mirabella, R. Reitano, S. D. Marco, M. Foti, and S. Lombardo, “Evolution of SiHx hydrides during the phase transition from amorphous to nanocrystalline silicon films,” J. Appl. Phys.111(4), 043510 (2012).
[CrossRef]

S. C. Saha, A. K. Barua, and S. Ray, “The Role of Hydrogen Dilution and Radio Frequency Power in the Formation of Microcrystallinity of n-type Si:H Thin Films,” J. Appl. Phys.74(9), 5561–5568 (1993).
[CrossRef]

P. J. Zanzucchi, C. R. Wronski, and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon,” J. Appl. Phys.48(12), 5227–5236 (1977).
[CrossRef]

A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon,” J. Appl. Phys.69(9), 6728–6730 (1991).
[CrossRef]

J. Cryst. Growth (1)

J. M. Seo, M. C. Jeong, and J. M. Myoung, “Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering,” J. Cryst. Growth295(2), 119–123 (2006).
[CrossRef]

J. Phys. (1)

A. Bittar, S. Berthier, and J. Lafait, “Non metal-metal transition in Bruggeman optical theory for inhomogeneous media,” J. Phys.45(3), 623–631 (1984).
[CrossRef]

J. Phys. D Appl. Phys. (1)

W. Du, X. Yang, H. Povolny, X. Liao, and X. Deng, “Impact of hydrogen dilution on microstructure and optoelectronic properties of silicon films deposited using trisilane,” J. Phys. D Appl. Phys.38(6), 838–842 (2005).
[CrossRef]

Mater. Sci. Eng. A (1)

M. Katiyar and J. R. Abelson, “Investigation of hydrogen plasma induced phase transition from a-Si:H to mc-Si:H using real time infrared spectroscopy,” Mater. Sci. Eng. A304–306, 349–352 (2001).
[CrossRef]

Opt. Commun. (1)

R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Opt. Commun.182(4-6), 273–279 (2000).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

H. M. Brodsky, M. Cardona, and J. J. Couomoet, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Phys. Rev. B16(8), 3556–3571 (1977).
[CrossRef]

V. Verlaan, C. H. M. van der Werf, W. M. Arnoldbik, H. D. Goldbach, and R. E. I. Schropp, “Unambiguous determination of Fourier-transform infrared spectroscopy proportionality factors: The case of silicon nitride,” Phys. Rev. B73(19), 195333 (2006).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

A. R. Forouhi and I. Bloomer, “Optical dispersion relations for amorphous semiconductors and amorphous dielectrics,” Phys. Rev. B Condens. Matter34(10), 7018–7026 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

T. Su, P. C. Taylor, G. Ganguly, and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett.89(1), 015502–015506 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

M. Cardona, “Vibrational spectra of hydrogen in silicon and germanium,” Phys. Status Solidi B118(2), 463–481 (1983).
[CrossRef]

Sol. Energy (1)

S. Klein, T. Repmann, and T. Brammer, “Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,” Sol. Energy77(6), 893–908 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: a new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000).
[CrossRef]

Superlattices Microstruct. (1)

D. Stroud, “The effective medium approximations: Some recent developments,” Superlattices Microstruct.23(3–4), 567–573 (1998).
[CrossRef]

Thin Solid Films (1)

I. Crupi, F. S. Ruggeri, A. Grasso, F. Ruffino, G. Catania, A. M. Piro, S. Di Marco, S. Mirabella, F. Simone, and F. Priolo, “Influence of the electro-optical properties of an α-Si:H single layer on the performances of a pin solar cell,” Thin Solid Films520(11), 4036–4040 (2012).
[CrossRef]

Vacuum (1)

N. Q. Khánh, M. Serényi, A. Csik, and C. Frigeri, “Determination of hydrogen concentration in a-Si and a-Ge layers by elastic recoil detection analysis,” Vacuum86(6), 711–713 (2012).
[CrossRef]

Other (6)

P. Wurfel, Physics of Solar Cells from Principles to New Concepts (Wiley-VCH Verlag GmbH, 2005).

R. Garcia-Hernansanz, E. Garcia-Hemme, D. Pastor, A. del Prado, I. Martil, G. Gonzalez-Diaz, J. Olea, and D. Pastor, “Hydrogenated amorphous silicon deposited by high pressure sputtering for HIT solar cells,” in Proceedings of IEEE conference on Electron Devices (CDE), (Institute of Electrical and Electronics Engineers, New York, 2013), pp. 337–340.

B. Rolf, Thin-Film Crystalline Silicon Solar Cells: Physics and Technology (Weinheim: Wiley-VCH, 2003).

J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).

Y. Kuo, Thin Film Transistors-Material and Processes, Volume 1 (Texas A&M University, U.S.A., 2004).

R. E. J. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic Publishers, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics