Abstract

We demonstrate molecular beam epitaxy (MBE) grown degenerately doped InGaBiAs:Si as a new transparent contact material usable from the near-infrared (near-IR) to the mid-infrared (mid-IR). This material system can exhibit high transparency over large portions of the 1.3-12.5 μm wavelength range, with the exact transparency windows determined by the material carrier concentration. As a comparison, the transmittance of the more conventional IR contact material, Indium Tin Oxide (ITO), drops rapidly for wavelengths longer than 1.5 μm. The conductivity of InGaBiAs:Si is also much higher than ITO due to its high doping concentration and good mobility. Our transmission spectra are modeled using a transfer matrix formalism, and the resulting modeled IR transmission spectra closely match our experimental results with proper choice of two fitting parameters, the material plasma frequency and the scattering rate.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic in the optical range,” Opt. Mater. Express1, 1090–1099 (2011).
    [CrossRef]
  2. J. L. Humphrey and D. Kuciauskas, “Optical susceptibilities of supported indium tin oxide thin films,” J. Appl. Phys.100(11), 113123 (2006).
    [CrossRef]
  3. D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett.34(3), 325–327 (2009).
    [CrossRef] [PubMed]
  4. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
    [CrossRef] [PubMed]
  5. L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009).
    [CrossRef]
  6. W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
    [CrossRef] [PubMed]
  7. D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010).
    [CrossRef]
  8. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011).
    [CrossRef] [PubMed]
  9. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
    [CrossRef] [PubMed]
  10. C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater. Sol. Cells91(17), 1529–1598 (2007).
    [CrossRef]
  11. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
    [CrossRef] [PubMed]
  12. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012).
    [CrossRef] [PubMed]
  13. J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011).
    [CrossRef]
  14. Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
    [CrossRef]
  15. P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
    [CrossRef]
  16. T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
    [CrossRef]
  17. H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
    [CrossRef]
  18. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev.93(3), 632–633 (1954).
    [CrossRef]
  19. T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc.67, 775 (1954).
  20. K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films516(17), 5829–5835 (2008).
    [CrossRef]
  21. A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
    [CrossRef]
  22. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys.47(9), 4086 (1976).
    [CrossRef]

2012 (3)

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
[CrossRef]

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012).
[CrossRef] [PubMed]

2011 (5)

G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic in the optical range,” Opt. Mater. Express1, 1090–1099 (2011).
[CrossRef]

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011).
[CrossRef]

2010 (1)

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010).
[CrossRef]

2009 (2)

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009).
[CrossRef]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett.34(3), 325–327 (2009).
[CrossRef] [PubMed]

2008 (1)

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films516(17), 5829–5835 (2008).
[CrossRef]

2007 (1)

C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater. Sol. Cells91(17), 1529–1598 (2007).
[CrossRef]

2006 (2)

J. L. Humphrey and D. Kuciauskas, “Optical susceptibilities of supported indium tin oxide thin films,” J. Appl. Phys.100(11), 113123 (2006).
[CrossRef]

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

2004 (2)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

2000 (1)

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
[CrossRef]

1986 (1)

T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
[CrossRef]

1976 (1)

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys.47(9), 4086 (1976).
[CrossRef]

1954 (2)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev.93(3), 632–633 (1954).
[CrossRef]

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc.67, 775 (1954).

Adams, D. C.

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012).
[CrossRef] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Attia, P.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Boltasseva, A.

Bomberger, C.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Burstein, E.

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev.93(3), 632–633 (1954).
[CrossRef]

Cheaito, R.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Chen, T. L.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010).
[CrossRef]

Chen, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Dongmo, P.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Dongmo, P. B.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
[CrossRef]

Du, X.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Edwards, P. P.

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

Ellmer, K.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films516(17), 5829–5835 (2008).
[CrossRef]

Fujii, T.

T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
[CrossRef]

Ghosh, D. S.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010).
[CrossRef]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett.34(3), 325–327 (2009).
[CrossRef] [PubMed]

Giurgola, S.

Gong, Y.

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

Goodhue, W. D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Granqvist, C. G.

C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater. Sol. Cells91(17), 1529–1598 (2007).
[CrossRef]

Grüner, G.

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009).
[CrossRef]

Haacke, G.

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys.47(9), 4086 (1976).
[CrossRef]

Hebard, A. F.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Hecht, D. S.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009).
[CrossRef]

Hiyamizu, S.

T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
[CrossRef]

Hopkins, P. E.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Hu, L.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009).
[CrossRef]

Humphrey, J. L.

J. L. Humphrey and D. Kuciauskas, “Optical susceptibilities of supported indium tin oxide thin films,” J. Appl. Phys.100(11), 113123 (2006).
[CrossRef]

Ihlefeld, J. F.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Inampudi, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Inata, T.

T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
[CrossRef]

Irvin, G.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Ishii, K.

T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
[CrossRef]

Jones, M. O.

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

Kamaras, K.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Kim, J.

Kuciauskas, D.

J. L. Humphrey and D. Kuciauskas, “Optical susceptibilities of supported indium tin oxide thin films,” J. Appl. Phys.100(11), 113123 (2006).
[CrossRef]

Kuhta, N. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Law, S.

Liu, L.

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

Liu, X.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Logan, J. M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Ly, J.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Martinez, L.

Mientus, R.

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films516(17), 5829–5835 (2008).
[CrossRef]

Morgan, D. V.

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

Moss, T. S.

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc.67, 775 (1954).

Naik, G. V.

Ng, G. I.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
[CrossRef]

Nikolou, M.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Perks, R. M.

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

Petropoulos, J. P.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
[CrossRef]

J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011).
[CrossRef]

Podolskiy, V. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Polikarpov, E.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Porch, A.

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

Pruneri, V.

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010).
[CrossRef]

D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, and V. Pruneri, “Widely transparent electrodes based on ultrathin metals,” Opt. Lett.34(3), 325–327 (2009).
[CrossRef] [PubMed]

Qin, H.

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

Radahakrishnan, K.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
[CrossRef]

Reynolds, J. R.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Ribaudo, T.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Rinzler, A. G.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Ryu, K.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Shi, Y.

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

Sippel, J.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Slocum, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Tanner, D. B.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Taylor, A. M.

Tompson, M. E.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Vangala, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Vergani, P.

Wasserman, D.

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express20(11), 12155–12165 (2012).
[CrossRef] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Wu, Z.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Xu, W.

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

Yoon, S. F.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
[CrossRef]

Zhang, D.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Zheng, H. Q.

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
[CrossRef]

Zhong, Y.

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
[CrossRef]

J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011).
[CrossRef]

Zhou, C.

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Zide, J. M. O.

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
[CrossRef]

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011).
[CrossRef]

Adv. Mater. (1)

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. P. Petropoulos, Y. Zhong, and J. M. O. Zide, “Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material,” Appl. Phys. Lett.99(3), 031110 (2011).
[CrossRef]

Y. Zhong, P. B. Dongmo, J. P. Petropoulos, and J. M. O. Zide, “Effects of molecular beam epitaxy growth conditions on composition and optical properties of InxGa1−xBiyAs1−y,” Appl. Phys. Lett.100(11), 112110 (2012).
[CrossRef]

L. Hu, D. S. Hecht, and G. Grüner, “Infrared transparent carbon nanotube thin films,” Appl. Phys. Lett.94(8), 081103 (2009).
[CrossRef]

D. S. Ghosh, T. L. Chen, and V. Pruneri, “High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid,” Appl. Phys. Lett.96(4), 041109 (2010).
[CrossRef]

Electron. Lett. (1)

T. Fujii, T. Inata, K. Ishii, and S. Hiyamizu, “Heavily Si-doped InGaAs lattice-matched to InP grown by MBE,” Electron. Lett.22(4), 191 (1986).
[CrossRef]

J. Appl. Phys. (5)

H. Q. Zheng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, “Electrical and optical properties of Si-doped InP grown by solid source molecular beam epitaxy using a valved phosphorus cracker cell,” J. Appl. Phys.87(11), 7988 (2000).
[CrossRef]

A. Porch, D. V. Morgan, R. M. Perks, M. O. Jones, and P. P. Edwards, “Electromagnetic absorption in transparent conducting films,” J. Appl. Phys.95(9), 4734 (2004).
[CrossRef]

G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys.47(9), 4086 (1976).
[CrossRef]

J. L. Humphrey and D. Kuciauskas, “Optical susceptibilities of supported indium tin oxide thin films,” J. Appl. Phys.100(11), 113123 (2006).
[CrossRef]

P. Dongmo, Y. Zhong, P. Attia, C. Bomberger, R. Cheaito, J. F. Ihlefeld, P. E. Hopkins, and J. M. O. Zide, “Enhanced room temperature electronic and thermoelectric properties of the dilute bismuthide InGaBiAs,” J. Appl. Phys.112(9), 093710 (2012).
[CrossRef]

Nano Lett. (1)

D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, and C. Zhou, “Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes,” Nano Lett.6(9), 1880–1886 (2006).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

W. Xu, Y. Gong, L. Liu, H. Qin, and Y. Shi, “Can graphene make better HgCdTe infrared detectors?” Nanoscale Res. Lett.6(1), 250 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (1)

E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev.93(3), 632–633 (1954).
[CrossRef]

Phys. Rev. Lett. (1)

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Proc. Phys. Soc. (1)

T. S. Moss, “The interpretation of the properties of indium antimonide,” Proc. Phys. Soc.67, 775 (1954).

Science (1)

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. G. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater. Sol. Cells91(17), 1529–1598 (2007).
[CrossRef]

Thin Solid Films (1)

K. Ellmer and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films516(17), 5829–5835 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) and (b) show the transmittance and reflection spectra of InGaBiAs:Si films and the ITO film as a function of wavelength. The inset shows the carrier concentration of each InGaBiAs:Si sample. In Fig. 1 (a), data measured by spectrophotometer (1-2 μm) are indicated by dashed lines, by FTIR are shown (above 2 μm) as solid lines, and the calculations for the transmittance calculated from FTIR data normalized to the substrate are indicated in dashed dot lines. In Fig. 1 (b), the directly measured reflectance are indicated by solid lines and the transmittance calculated from the complex dielectric constant extracted from the FTIR fitting parameters are noted by dashed lines.

Fig. 2
Fig. 2

Shown above is a plot of the samples’ measured band gaps versus carrier concentration. The dashed and solid curve represent the range of the fitting effective mass m* from 0.041 to 0.062. The dots [15] and open squares (samples we have adopted in the previous discussion) represent the experimentally measured bandgap.

Fig. 3
Fig. 3

(a) and (b) exhibit the calculated real component εr and the imaginary component εi of the extracted dielectric constants ε(ω). The error bars of εr and εi come from the uncertainty in the fitted scattering rate Γ.

Fig. 4
Fig. 4

Comparison of the transparent windows (transmittance> 65%) of InGaBiAs:Si films and the ITO film as well as FOM. The FOM of ITO is 2.9x10−7 □/ Ω, very close to zero. It is noted in the figure for clear comparison. In the inset, the numbers by the bars indicate the carrier concentration.

Tables (2)

Tables Icon

Table 1 Experimental and fitting parameters for the transmission spectra

Tables Icon

Table 2 Comparison of figure of merit for InGaBiAs:Si and ITO

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)= ε s ( 1 ω p 2 ω 2 +iωГ )= ε r + ε i = ( n+ik ) 2
ω p 2 = Ne 2 ε s ε 0 m*
Г= e μm*

Metrics