Abstract

Conventional dielectric moth eye structure is well known to be antireflective, but cannot work well in the whole solar spectrum. In addition, it cannot be used as a light absorber. However, in some cases, light absorbing and harvesting are important for energy conversion from light to heat or electricity. Here, we propose a metamaterial-based nanopyramid array which shows near 100% absorbing property in the entire solar spectrum (i.e. 0.2-2.5 μm). In addition, the high absorption performance of meta-nanopyramid array retains very well at a wide receiving angle with polarization-independent. Thus, it can dramatically improve the efficiency of the solar light absorbing. The efficient light absorbing property can be explained in terms of the synergetic effects of slow light mode, surface plasmon polariton resonance and magnetic polariton resonance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007).
    [CrossRef]
  2. S. Wilson and M. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” J. Mod. Opt.29(1), 993–1009 (1982).
  3. D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).
  4. S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun.31(6), 539–544 (2010).
    [CrossRef] [PubMed]
  5. R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
    [CrossRef]
  6. R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
    [CrossRef] [PubMed]
  7. J. S. Y. Young Min Song and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 226–228 (2010).
    [PubMed]
  8. P. Clapham and M. Hutley, “Reduction of lens reflection by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
    [CrossRef]
  9. S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
    [CrossRef]
  10. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  13. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
    [CrossRef] [PubMed]
  14. X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).
  15. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012).
    [CrossRef] [PubMed]
  16. D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
    [CrossRef]
  17. Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010).
    [CrossRef]
  18. C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009).
    [CrossRef] [PubMed]
  19. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
    [CrossRef]
  20. K. Liou, An introduction to atmospheric radiation, 84 (Academic press, 2002).
  21. FDTD, lumerical, http://www.lumerical.com/ , 10, 2010.
  22. E. Palik, Handbook of optical constants of solids, 3 (Academic press, 1998).
  23. J. Dobrowolski, “Optical properties of films and coatings,” Handbook of Optics 1, 42–1 (1995).
  24. T. C. Choy, Effective Medium Theory: Principles and Applications, 102 (Oxford University Press on Demand, 1999).
  25. D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
    [CrossRef]
  26. T. Tang, F. Chen, and B. Sun, “Photonic band gap from periodic structures containing anisotropic nonmagnetic left-handed metamaterial,” Chin. Opt. Lett.8(4), 431–434 (2010).
  27. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
    [CrossRef] [PubMed]
  28. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103–110 (2011).
  29. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
    [CrossRef] [PubMed]
  30. J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Co16(2), 96–98 (2006).
    [CrossRef]
  31. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
    [CrossRef] [PubMed]
  32. N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
    [CrossRef]
  33. H. Raether, Surface plasmons (Springer-Verlag Berlin, 1988).
  34. Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013).
    [CrossRef]
  35. W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15(6), 3333–3341 (2007).
    [CrossRef] [PubMed]
  36. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
    [CrossRef] [PubMed]

2013 (2)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013).
[CrossRef]

2012 (5)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012).
[CrossRef] [PubMed]

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

2011 (2)

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103–110 (2011).

2010 (5)

J. S. Y. Young Min Song and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 226–228 (2010).
[PubMed]

T. Tang, F. Chen, and B. Sun, “Photonic band gap from periodic structures containing anisotropic nonmagnetic left-handed metamaterial,” Chin. Opt. Lett.8(4), 431–434 (2010).

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010).
[CrossRef]

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun.31(6), 539–544 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

2007 (2)

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007).
[CrossRef]

W. Cai, U. K. Chettiar, H. K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15(6), 3333–3341 (2007).
[CrossRef] [PubMed]

2006 (3)

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Co16(2), 96–98 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1982 (2)

S. Wilson and M. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” J. Mod. Opt.29(1), 993–1009 (1982).

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

1973 (1)

P. Clapham and M. Hutley, “Reduction of lens reflection by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Abbas, M. N.

Arikawa, K.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).

Aspnes, D.

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Averitt, R. D.

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Bingham, C. M.

Brunner, R.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

Cai, W.

Chang, Y. C.

Chattopadhyay, S.

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Chen, F.

Chen, H.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103–110 (2011).

Chen, K.

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Chen, L.

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Chen, X.

C. Hu, Z. Zhao, X. Chen, and X. Luo, “Realizing near-perfect absorption at visible frequencies,” Opt. Express17(13), 11039–11044 (2009).
[CrossRef] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Cheng, C. W.

Cheng, D.

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Cheng, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013).
[CrossRef]

Chettiar, U. K.

Chiu, C. W.

Choi, S. J.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun.31(6), 539–544 (2010).
[CrossRef] [PubMed]

Clapham, P.

P. Clapham and M. Hutley, “Reduction of lens reflection by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

de Silva, V. C.

Deng, L.

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Dewan, R.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

Drachev, V. P.

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Fischer, S.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

Foletti, S.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).

Fu, L.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

Fu, Y.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Ganguly, A.

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

Gong, R.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013).
[CrossRef]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Gui, T.

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

Hamraz, S.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

He, J.

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Co16(2), 96–98 (2006).
[CrossRef]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010).
[CrossRef]

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Co16(2), 96–98 (2006).
[CrossRef]

He, X.

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

Hobbs, D. S.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007).
[CrossRef]

Hu, C.

Huang, L.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103–110 (2011).

Huang, Y.

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Huh, S. Y.

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun.31(6), 539–544 (2010).
[CrossRef] [PubMed]

Hutley, M.

S. Wilson and M. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” J. Mod. Opt.29(1), 993–1009 (1982).

P. Clapham and M. Hutley, “Reduction of lens reflection by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

Jen, Y.

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kaiser, S.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

Kildishev, A. V.

Knipp, D.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Lai, K. T.

Landy, N. I.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, Y. T.

Liang, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Liu, N.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

Lu, Z.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Luo, X.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

MacLeod, B. D.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007).
[CrossRef]

Meyer-Rochow, V. B.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Morhard, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

Nie, Y.

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013).
[CrossRef]

Özdemir, Y.

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Pacholski, C.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

Padilla, W. J.

Palasantzas, G.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Riccobono, J. R.

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007).
[CrossRef]

Sandfuchs, O.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schweizer, H.

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

Shalaev, V. M.

Shih, M. H.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Spatz, J.

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stavenga, D.

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).

Sun, B.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sun, Q.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Tang, T.

Tao, H.

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

Wang, C.

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Wang, J.

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

Wang, T.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Wang, Y.

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

Wilson, S.

S. Wilson and M. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” J. Mod. Opt.29(1), 993–1009 (1982).

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Wu, Q.

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

Xie, J.

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Ye, Y.

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010).
[CrossRef]

Young Min Song, J. S. Y.

Yu, W.

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Yuan, H. K.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, H.

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Zhang, N.

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Zhang, S.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express16(10), 7181–7188 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhao, Z.

Adv. Mater. (1)

N. Liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials,” Adv. Mater.20(20), 3859–3865 (2008).
[CrossRef]

Adv. Opt. Mater. (1)

Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, and W. Yu, “Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting,” Adv. Opt. Mater.1(1), 43–49 (2013).
[CrossRef]

Am. J. Phys. (1)

D. Aspnes, “Local-field effects and effective-medium theory: A microscopic perspective,” Am. J. Phys.50(8), 704–709 (1982).
[CrossRef]

Bioinspir. Biomim. (1)

R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Özdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspir. Biomim.7(1), 016003 (2012).
[CrossRef] [PubMed]

Chin. Opt. Lett. (1)

IEEE Microw. Wirel. Co (1)

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Co16(2), 96–98 (2006).
[CrossRef]

J. Mod. Opt. (1)

S. Wilson and M. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” J. Mod. Opt.29(1), 993–1009 (1982).

JOSA B (2)

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” JOSA B29(6), 1503–1510 (2012).
[CrossRef]

Y. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” JOSA B27(3), 498–504 (2010).
[CrossRef]

Laser. Photonics. Rev (1)

R. Brunner, O. Sandfuchs, C. Pacholski, C. Morhard, and J. Spatz, “Lessons from nature: biomimetic subwavelength structures for high-performance optics,” Laser. Photonics. Rev6(5), 641–659 (2012).
[CrossRef]

Macromol. Rapid Commun. (1)

S. J. Choi and S. Y. Huh, “Direct structuring of a biomimetic anti-reflective, self-cleaning surface for light harvesting in organic solar cells,” Macromol. Rapid Commun.31(6), 539–544 (2010).
[CrossRef] [PubMed]

Mater. Sci. Eng. Rep. (1)

S. Chattopadhyay, Y. Huang, Y. Jen, A. Ganguly, K. Chen, and L. Chen, “Anti-reflecting and photonic nanostructures,” Mater. Sci. Eng. Rep.69(1), 1–35 (2010).
[CrossRef]

Nano Lett. (1)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012).
[CrossRef] [PubMed]

Nature (2)

P. Clapham and M. Hutley, “Reduction of lens reflection by the “moth eye” principle,” Nature244(5414), 281–282 (1973).
[CrossRef]

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature455(7211), 376–379 (2008).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Laser Technol. (1)

Y. Cheng, Y. Nie, and R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films,” Opt. Laser Technol.48, 415–421 (2013).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(33 Pt 2B), 036617 (2005).
[CrossRef] [PubMed]

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 016608 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance anti-reflecting surface relief microstructures,” Proc. SPIE6545, 65450Y, 65450Y-14 (2007).
[CrossRef]

Prog. Electromagnetics Res. (2)

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagnetics Res.113, 103–110 (2011).

X. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagnetics Res.115, 381–397 (2011).

Sci. (1)

D. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, ““Light on the moth-eye corneal nipple array of butterflies,” P. Roy.Soc. B-Biol,” Sci.273(1587), 661–667 (2006).

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (6)

K. Liou, An introduction to atmospheric radiation, 84 (Academic press, 2002).

FDTD, lumerical, http://www.lumerical.com/ , 10, 2010.

E. Palik, Handbook of optical constants of solids, 3 (Academic press, 1998).

J. Dobrowolski, “Optical properties of films and coatings,” Handbook of Optics 1, 42–1 (1995).

T. C. Choy, Effective Medium Theory: Principles and Applications, 102 (Oxford University Press on Demand, 1999).

H. Raether, Surface plasmons (Springer-Verlag Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Calculated absorption spectra of the dielectric absorber, metamaterial-based nanopyramidal solar energy absorber and the effective homogeneous pyramidal structure with the same period (P) and height (H): P = 200 nm, H = 510 nm. (b) Retrieved impedance Z of the metamaterial-based nanopyramidal solar energy absorber. The insets of Fig. 1(a) show the diagram of metamaterial-based nanopyramidal solar energy absorber. The thickness of metal film(tm) and dielectric film (td) is tm = 10 nm and td = 20 nm respectively. The number of metal/dielectric pairs N = 17.

Fig. 2
Fig. 2

(a) Absorption spectra of the metamaterial-based nanopyramidal solar energy absorber with different height of the nanopyramid, when the period of the nanopyramid array is 200 nm. (b) Absorption spectra as a function of polarization angle; (c) Absorption spectra as a function of azimuthal angle, when the incident angle θ = 40° and the wavelength λ0 = 500 nm, and 1.5 μm, respectively. (d) Absorption spectra for different oblique incident angles: θ = 40°, 60°, and 80°, respectively, when azimuthal angle φ = 0. The period (P) and height (H) of the metamaterial-based nanopyramidal solar energy absorber in Fig. 2. (b) , (c) and (d) are: P = 200 nm, H = 510 nm.

Fig. 3
Fig. 3

Distributions of the y-component magnetic field (|Hy|) (color maps) and the energy flow (arrow maps) of the metamaterial-based nanopyramidal solar energy absorber in the plane y = 0 at four different TM waves λ0: (a) 400 nm, (b) 800 nm, (c) 1.5 μm, and (d) 2.5 μm, respectively. The incident wavelength for each case is shown at the top right side of each figure.

Fig. 4
Fig. 4

Distributions of the electric field (|E/E0|^2) of the metamaterial-based nanopyramidal solar energy absorber in the plane y = 0 at four different TM waves λ0: (a) 400 nm, (b) 800 nm, (c) 1.5 μm, and (d) 2.5 μm, respectively. The incident wavelength for each case is shown at the top right side of each figure.

Fig. 5
Fig. 5

Distributions of (a) the electric field (|E/E0|^2); (b) the y-component electric field (real (Ey)); (c) the z-component electric field (real (Ez)) of the metamaterial-based nanopyramidal solar energy absorber in the metal/dielectric interface (z = 110 nm plane) at the TM wave λ0 = 2.5 μm for the metamaterial-based nanopyramidal solar energy absorber. The incident wavelengths are shown at the top right side of each figure.

Fig. 6
Fig. 6

Distributions of the z-component electric field (real (Ez)) of the metamaterial-based nanopyramidal solar energy absorber in the plane y = 0 at two TM waves λ0: (a) 1.5 μm, and (b) 2.5 μm, respectively. Current density (J) distributions (color maps) and current flow directions (arrow maps) in the plane y = 0 at two different TM waves λ0: (c) 1.5 μm, and (d) 2.5 μm, respectively. The incident wavelength for each case is shown at the top right side of each figure.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε // =f ε m (ω)+(1f) ε d (ω)
1 ε = f ε m (ω) + 1f ε d (ω)
z ˜ = (1+ S 11 ) 2 S 21 2 (1 S 11 ) 2 S 21 2
e in k 0 d = S 21 /(1 S 11 z ˜ 1 z ˜ +1 )

Metrics