Abstract

The spectroscopic properties of Ho3+-doped YVO4 were studied at cryogenic temperatures in the 2 µm spectral region to clarify recent observations of efficient dual-wavelength laser operation in this material. Energy levels of the 5I7 and 5I8 manifolds were determined from low-temperature absorption and fluorescence measurements. Polarized absorption cross sections were measured, and stimulated emission cross sections were determined using the reciprocity method coupled with Füchtbauer-Ladenburg calculations. The observed laser emission wavelengths were at 2054.2 nm and 2068.5 nm. At 80 K, radiative lifetimes for the 5I7 manifold were calculated to be 3.6 ms, and fluorescence lifetimes were measured to be 2.9 ms, indicating a quantum efficiency of ~80%. Analysis of the gain cross section at 80 K and 100 K showed that the laser output wavelength is very susceptible to minor changes in temperature.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. M. Taczak and D. K. Killinger, “Development of a Tunable, Narrow-Linewidth, CW 2.066-μm Ho:YLF Laser for Remote Sensing of Atmospheric CO2 and H2O,” Appl. Opt.37(36), 8460–8476 (1998).
    [CrossRef] [PubMed]
  2. S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt.41(11), 2175–2196 (1994).
    [CrossRef]
  3. H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
    [CrossRef]
  4. A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
    [CrossRef]
  5. D. W. Hart, M. Jani, and N. P. Barnes, “Room-temperature lasing of end-pumped Ho:Lu3Al5O12,” Opt. Lett.21(10), 728–730 (1996).
    [CrossRef] [PubMed]
  6. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express15(22), 14404–14413 (2007).
    [CrossRef] [PubMed]
  7. G. A. Newburgh, A. Word-Daniels, A. Michael, L. D. Merkle, A. Ikesue, and M. Dubinskii, “Resonantly diode-pumped Ho3+:Y2O3 ceramic 2.1 µm laser,” Opt. Express19(4), 3604–3611 (2011).
    [CrossRef] [PubMed]
  8. R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett.51(23), 1885 (1987).
    [CrossRef]
  9. G. A. Newburgh and M. Dubinskii, “Resonantly diode pumped Ho3+:YVO4 2.05-µm laser,” Proc. SPIE8039, 803905, 803905-6 (2011).
    [CrossRef]
  10. G. A. Newburgh, Z. Fleischman, and M. Dubinskii, “Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho3+:YVO4 laser,” Opt. Lett.37(18), 3888–3890 (2012).
    [CrossRef] [PubMed]
  11. J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
    [CrossRef]
  12. M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
    [CrossRef]
  13. S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
    [CrossRef]
  14. R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
    [CrossRef]
  15. M. Barakat and C. B. P. Finn, “A near-infrared investigation of the crystal-field splitting of the low-lying manifolds of the holmium ion in holmium vanadate,” J. Phys. C Solid State Phys.21(36), 6123–6132 (1988).
    [CrossRef]
  16. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
    [CrossRef]
  17. C. Gorller-Walrand and K. Binnemans, “Rationalization of crystal-field parameterization,” in Handbook on the Physics and Chemistry of Rare Earths, Volume 23 (Elsevier Science, 1996).
  18. G. Li, B.-Q. Yao, P.-B. Meng, Y.-L. Ju, and Y.-Z. Wang, “High-efficiency resonantly pumped room temperature Ho:YVO4 laser,” Opt. Lett.36(15), 2934–2936 (2011).
    [CrossRef] [PubMed]
  19. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
    [CrossRef]
  20. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
    [CrossRef]
  21. F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
    [CrossRef]
  22. W. Ryba-Romanowski, “YVO4 crystals – puzzles and challenges,” Cryst. Res. Technol.38(35), 225–236 (2003).
    [CrossRef]

2012

2011

2007

2006

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

2005

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

2003

W. Ryba-Romanowski, “YVO4 crystals – puzzles and challenges,” Cryst. Res. Technol.38(35), 225–236 (2003).
[CrossRef]

2002

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

2000

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

1998

1996

1994

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt.41(11), 2175–2196 (1994).
[CrossRef]

1990

M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
[CrossRef]

1988

M. Barakat and C. B. P. Finn, “A near-infrared investigation of the crystal-field splitting of the low-lying manifolds of the holmium ion in holmium vanadate,” J. Phys. C Solid State Phys.21(36), 6123–6132 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

1987

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett.51(23), 1885 (1987).
[CrossRef]

1986

A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
[CrossRef]

1977

J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
[CrossRef]

1976

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

1964

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
[CrossRef]

Armstrong, D.

Barakat, M.

M. Barakat and C. B. P. Finn, “A near-infrared investigation of the crystal-field splitting of the low-lying manifolds of the holmium ion in holmium vanadate,” J. Phys. C Solid State Phys.21(36), 6123–6132 (1988).
[CrossRef]

Barnes, N. P.

Battison, J. E.

J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
[CrossRef]

Bettinelli, M.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Birnbaum, M.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett.51(23), 1885 (1987).
[CrossRef]

Cavalli, E.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Cone, R. L.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Dergachev, A.

Dominiak-Dzik, G.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

Drake, T.

Dubinskii, M.

Dubois, M.

Enderle, M.

M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
[CrossRef]

Ermeneux, F. S.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Esterowitz, A. L.

A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
[CrossRef]

Fields, R. A.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett.51(23), 1885 (1987).
[CrossRef]

Fincher, C. L.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett.51(23), 1885 (1987).
[CrossRef]

Finn, C. B. P.

M. Barakat and C. B. P. Finn, “A near-infrared investigation of the crystal-field splitting of the low-lying manifolds of the holmium ion in holmium vanadate,” J. Phys. C Solid State Phys.21(36), 6123–6132 (1988).
[CrossRef]

Fleischman, Z.

Golab, S.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

Goldberg, L.

A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
[CrossRef]

Goldner, P.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Goutaudier, C.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Guillot-Noel, O.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Hannon, S. M.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt.41(11), 2175–2196 (1994).
[CrossRef]

Hart, D. W.

Ikesue, A.

Jani, M.

Ju, Y.-L.

Kahle, H. G.

M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
[CrossRef]

Kang, H. W.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

Kasten, A.

J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
[CrossRef]

Killinger, D. K.

Kroll, S.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Leask, M. J. M.

J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
[CrossRef]

Lee, H.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

Li, G.

Lowry, J. B.

J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
[CrossRef]

Lu, H. L.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Lukasiewicz, T.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
[CrossRef]

Meng, P.-B.

Merkle, L. D.

Michael, A.

Moncorge, R.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Newburgh, G. A.

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Nilson, M.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Petersen, J.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

Pilawa, B.

M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
[CrossRef]

Ryba-Romanowski, W.

W. Ryba-Romanowski, “YVO4 crystals – puzzles and challenges,” Cryst. Res. Technol.38(35), 225–236 (2003).
[CrossRef]

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

Schlaphof, W.

M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
[CrossRef]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Smith, A.

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

Solarz, P.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

Storm, M.

A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
[CrossRef]

Sun, Y.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Swirkowicz, M.

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

Taczak, T. M.

Teichman, J. H.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

Thomson, J. A.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt.41(11), 2175–2196 (1994).
[CrossRef]

Velazquez, M.

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Wang, Y.-Z.

Welch, A. J.

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

Weller, J. F.

A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
[CrossRef]

Word-Daniels, A.

Yao, B.-Q.

Zannoni, E.

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Acta Crystallogr. A

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A32(5), 751–767 (1976).
[CrossRef]

Appl. Opt.

Appl. Phys. B

S. Golab, P. Solarz, G. Dominiak-Dzik, T. Lukasiewicz, M. Swirkowicz, and W. Ryba-Romanowski, “Spectroscopy of YVO4:Ho3+ crystals,” Appl. Phys. B74(3), 237–241 (2002).
[CrossRef]

Appl. Phys. Lett.

R. A. Fields, M. Birnbaum, and C. L. Fincher, “Highly efficient Nd:YVO4 diode-laser end-pumped laser,” Appl. Phys. Lett.51(23), 1885 (1987).
[CrossRef]

Cryst. Res. Technol.

W. Ryba-Romanowski, “YVO4 crystals – puzzles and challenges,” Cryst. Res. Technol.38(35), 225–236 (2003).
[CrossRef]

Electron. Lett.

A. L. Esterowitz, L. Goldberg, J. F. Weller, and M. Storm, “Diode-pumped 2 spl mu/m holmium laser,” Electron. Lett.22(18), 947 (1986).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron.24(11), 2243–2252 (1988).
[CrossRef]

J. Mod. Opt.

S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt.41(11), 2175–2196 (1994).
[CrossRef]

J. Phys. C Solid State Phys.

J. E. Battison, A. Kasten, M. J. M. Leask, and J. B. Lowry, “Spectroscopic investigation of holmium vanadate, HoVO4,” J. Phys. C Solid State Phys.10(2), 323–332 (1977).
[CrossRef]

M. Barakat and C. B. P. Finn, “A near-infrared investigation of the crystal-field splitting of the low-lying manifolds of the holmium ion in holmium vanadate,” J. Phys. C Solid State Phys.21(36), 6123–6132 (1988).
[CrossRef]

J. Phys. Condens. Matter

M. Enderle, B. Pilawa, W. Schlaphof, and H. G. Kahle, “Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure: I. Ho3+ in YVO4,” J. Phys. Condens. Matter2(21), 4685–4700 (1990).
[CrossRef]

R. Moncorge, M. Velazquez, P. Goldner, O. Guillot-Noel, H. L. Lu, M. Nilson, S. Kroll, E. Cavalli, and M. Bettinelli, “Linear and non-linear spectroscopy of Ho3+-doped YVO4 and LuVO4,” J. Phys. Condens. Matter17(42), 6751–6762 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev.136(4A), A954–A957 (1964).
[CrossRef]

Phys. Rev. B

F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, “Multiphonon relaxation in YVO4 single crystals,” Phys. Rev. B61(6), 3915–3921 (2000).
[CrossRef]

Proc. SPIE

G. A. Newburgh and M. Dubinskii, “Resonantly diode pumped Ho3+:YVO4 2.05-µm laser,” Proc. SPIE8039, 803905, 803905-6 (2011).
[CrossRef]

H. W. Kang, H. Lee, J. Petersen, J. H. Teichman, and A. J. Welch, “Investigation of Stone Retropulsion as a Function of Ho:YAG Laser Pulse Duration,” Proc. SPIE6078, 607815, 607815-11 (2006).
[CrossRef]

Other

C. Gorller-Walrand and K. Binnemans, “Rationalization of crystal-field parameterization,” in Handbook on the Physics and Chemistry of Rare Earths, Volume 23 (Elsevier Science, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified energy level diagram showing the relevant laser transitions between the 5I7 and 5I8 manifolds, and the Boltzmann populations for 80 K and 100 K.

Fig. 2
Fig. 2

Absorption (solid line) and stimulated emission (dotted line) cross sections for polarized transitions between the ground state 5I8 and first excited state 5I7 on Ho3 + in YVO4 at 80 K. Baselines have been offset for clarity.

Fig. 3
Fig. 3

Fluorescence (solid) and radiative (open) lifetimes of the 5I7 manifold of Ho3+ in YVO4 as a function of temperature. Inset: Fluorescence decay waveforem at 80 K.

Fig. 4
Fig. 4

Gain cross section as a function of population inversion β for observed laser wavelengths 2054.2 nm (dashed line) and 2068.5 nm (solid line) at 80 K and 100 K. The horizontal line in each graph denotes the point where the two wavelengths have equal gain cross section, and is labeled by the output-coupler reflectivity needed to attain lasing threshold at this point.

Tables (5)

Tables Icon

Table 1 Energy levels of the 5I8 and 5I7 manifolds of Ho3+ in YVO4. Dashes indicate forbidden transitions.

Tables Icon

Table 2 Selection rules for induced ED and MD transitions in D2d symmetry [17].

Tables Icon

Table 3 Observed energy levels of the higher manifolds of Ho3+ in YVO4.

Tables Icon

Table 4 Stimulated emission (S.E.) and absorption (Abs.)cross sections for two laser-related peaks.

Tables Icon

Table 5 Parameters used in previous laser results [10].

Metrics