Abstract

We report on the ultrashort pulse laser induced formation of birefringent structures in the volume of different glasses: Borofloat 33, BK7 and ULE™. Using polarization contrast and scanning electron microscopy we could prove that this birefringence is induced by nanogratings. We were able to identify the pulse duration as a crucial process parameter for the generation of nanogratings in these glasses. The achieved birefringence in ULE is comparable to fused silica, while borosilicate glasses show much less birefringence (only about 12%). Remarkably, the period of the nanogratings is also dependent on the type of the glass, being 250 nm for ULE and only 60 nm in case of Borofloat 33.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
    [CrossRef]
  2. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
    [CrossRef]
  3. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photon. Rev.2(1–2), 26–46 (2008).
    [CrossRef]
  4. S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
    [CrossRef]
  5. M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2010BWC3, Optical Society of America, 2010.
  6. M. Lancry, B. Poumellec, K. Cook, and J. Canning, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica”, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM)208–210, IEEE, 2011.
  7. L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
    [CrossRef]
  8. M. Beresna, M. Geceivicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express1(4), 783–795 (2011).
    [CrossRef]
  9. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
    [CrossRef] [PubMed]
  10. M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P.G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
    [CrossRef]
  11. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011).
    [CrossRef]
  12. Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
    [CrossRef]
  13. D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express16(3), 1517–1522 (2008).
    [CrossRef] [PubMed]
  14. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
    [CrossRef] [PubMed]
  15. P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
    [CrossRef]
  16. Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
    [CrossRef] [PubMed]
  17. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
    [CrossRef] [PubMed]
  18. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
    [CrossRef]
  19. H. Zheng and C. L. Gnian, “Laser-effected darkening in TPEs with TiO2additives,” Opt. Lasers Eng.41(5), 791–800 (2004).
    [CrossRef]
  20. A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
    [CrossRef]
  21. S. T. Gulati and M. J. Edwards, “ULE - Zero Expansion, low density and dimensionally stable material for lightweight optical systems,” Advanced Materials for Optics and Precision StructuresCR67, 107–136 (1997).

2012 (2)

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (2)

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

2009 (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

2008 (2)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photon. Rev.2(1–2), 26–46 (2008).
[CrossRef]

D. Wortmann, J. Gottmann, N. Brandt, and H. Horn-Solle, “Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching,” Opt. Express16(3), 1517–1522 (2008).
[CrossRef] [PubMed]

2005 (2)

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
[CrossRef]

2004 (3)

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

H. Zheng and C. L. Gnian, “Laser-effected darkening in TPEs with TiO2additives,” Opt. Lasers Eng.41(5), 791–800 (2004).
[CrossRef]

A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
[CrossRef]

2003 (1)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
[CrossRef]

1999 (1)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

1997 (1)

S. T. Gulati and M. J. Edwards, “ULE - Zero Expansion, low density and dimensionally stable material for lightweight optical systems,” Advanced Materials for Optics and Precision StructuresCR67, 107–136 (1997).

Beresna, M.

Bhardwaj, V. R.

Brandt, N.

Brisset, F.

M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2010BWC3, Optical Society of America, 2010.

Burns, G. R.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

Canning, J.

M. Lancry, B. Poumellec, K. Cook, and J. Canning, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica”, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM)208–210, IEEE, 2011.

Chahid-Erraji, A.

Cheng, Y.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Cook, K.

M. Lancry, B. Poumellec, K. Cook, and J. Canning, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica”, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM)208–210, IEEE, 2011.

Corkum, P. B.

Döring, S.

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
[CrossRef]

Dreisow, F.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Edwards, M. J.

S. T. Gulati and M. J. Edwards, “ULE - Zero Expansion, low density and dimensionally stable material for lightweight optical systems,” Advanced Materials for Optics and Precision StructuresCR67, 107–136 (1997).

Geceivicius, M.

Gnian, C. L.

H. Zheng and C. L. Gnian, “Laser-effected darkening in TPEs with TiO2additives,” Opt. Lasers Eng.41(5), 791–800 (2004).
[CrossRef]

Gottmann, J.

Gulati, S. T.

S. T. Gulati and M. J. Edwards, “ULE - Zero Expansion, low density and dimensionally stable material for lightweight optical systems,” Advanced Materials for Optics and Precision StructuresCR67, 107–136 (1997).

Guo, J.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

Heinrich, M.

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
[CrossRef]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Hertwig, A.

A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
[CrossRef]

Hirao, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
[CrossRef]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photon. Rev.2(1–2), 26–46 (2008).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Horn-Solle, H.

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Inouye, H.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Jia, F.

Kautek, W.

A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
[CrossRef]

Kazansky, P. G.

M. Beresna, M. Geceivicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express1(4), 783–795 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
[CrossRef]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Kazansky, P.G.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P.G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
[CrossRef]

Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
[CrossRef]

Keil, R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Kley, E. B.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

Korovin, A. V.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Krüger, J.

A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
[CrossRef]

Lancry, M.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P.G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2010BWC3, Optical Society of America, 2010.

M. Lancry, B. Poumellec, K. Cook, and J. Canning, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica”, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM)208–210, IEEE, 2011.

Luk, T. S.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

Martin, S.

A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
[CrossRef]

Mitsuyu, T.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Miura, K.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Nolte, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
[CrossRef]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Peschel, U.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Plech, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

Poumellec, B.

M. Lancry, B. Poumellec, A. Chahid-Erraji, M. Beresna, and P.G. Kazansky, “Dependence of the femtosecond laser refractive index change thresholds on the chemical composition of doped-silica glasses,” Opt. Mater. Express1(4), 711–723 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. G. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express1(4), 766–782 (2011).
[CrossRef]

M. Lancry, B. Poumellec, K. Cook, and J. Canning, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica”, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM)208–210, IEEE, 2011.

M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2010BWC3, Optical Society of America, 2010.

Qio, J.

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Qiu, J.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
[CrossRef]

Ramirez, L. P. R.

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Rayner, D. M.

Richter, S.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
[CrossRef]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Sakakura, M.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Shimotsuma, Y.

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
[CrossRef]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photon. Rev.2(1–2), 26–46 (2008).
[CrossRef]

C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica,” Opt. Lett.30(14), 1867–1869 (2005).
[CrossRef] [PubMed]

Steinert, M.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photon. Rev.2(1–2), 26–46 (2008).
[CrossRef]

Taylor, R. S.

Tünnermann, A.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett.37(4), 482–484 (2012).
[CrossRef] [PubMed]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
[CrossRef]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

Vawter, G. A.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

Wortmann, D.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Yang, P.

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Zheng, H.

H. Zheng and C. L. Gnian, “Laser-effected darkening in TPEs with TiO2additives,” Opt. Lasers Eng.41(5), 791–800 (2004).
[CrossRef]

Zimmermann, F.

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano3(12), 4062–4070 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

Y. Shimotsuma, M. Sakakura, P. G. Kazansky, M. Beresna, J. Qiu, K. Miura, and K. Hirao, “Ultrafast Manipulation of self-assembled form birefringence in glass,” Adv. Mater.22(36), 4039–4043 (2010).
[CrossRef] [PubMed]

Advanced Materials for Optics and Precision Structures (1)

S. T. Gulati and M. J. Edwards, “ULE - Zero Expansion, low density and dimensionally stable material for lightweight optical systems,” Advanced Materials for Optics and Precision StructuresCR67, 107–136 (1997).

Appl. Phys. A (3)

A. Hertwig, S. Martin, J. Krüger, and W. Kautek, “Surface damage and color centers generated by femtosecond pulses in borosilicate glass and silica,” Appl. Phys. A79(4-6), 1075–1077 (2004).
[CrossRef]

S. Richter, M. Heinrich, S. Döring, A. Tünnermann, and S. Nolte, “Formation of femtosecond laser-induced nanogratings at high repetition rates,” Appl. Phys. A104(2), 503–507 (2011).
[CrossRef]

L. P. R. Ramirez, M. Heinrich, S. Richter, F. Dreisow, R. Keil, A. V. Korovin, U. Peschel, S. Nolte, and A. Tünnermann, “Tuning the structural properties of femtosecond-laser-induced nanogratings,” Appl. Phys. A100(1), 1–6 (2010).
[CrossRef]

J. Appl. Phys. (1)

P. Yang, G. R. Burns, J. Guo, T. S. Luk, and G. A. Vawter, “Femtosecond laser-pulse-induced birefringence in optically isotropic glass,” J. Appl. Phys.95(10), 5280–5283 (2004).
[CrossRef]

Laser Phot. Rev. (1)

S. Richter, A. Plech, M. Steinert, M. Heinrich, S. Döring, F. Zimmermann, U. Peschel, E. B. Kley, A. Tünnermann, and S. Nolte, “On the fundamental structure of femtosecond laser-induced nanogratings,” Laser Phot. Rev.6(6), 787–792 (2012).
[CrossRef]

Laser Photon. Rev. (1)

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica,” Laser Photon. Rev.2(1–2), 26–46 (2008).
[CrossRef]

Mod. Phys. Lett. B (1)

Y. Shimotsuma, K. Hirao, J. Qiu, and P.G. Kazansky, “Nano-modification inside transparent materials by femtosecond laser single beam,” Mod. Phys. Lett. B19(05), 225–238 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

H. Zheng and C. L. Gnian, “Laser-effected darkening in TPEs with TiO2additives,” Opt. Lasers Eng.41(5), 791–800 (2004).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (3)

Phys. Rev. Lett. (2)

P. G. Kazansky, H. Inouye, T. Mitsuyu, K. Miura, J. Qio, and K. Hirao, “Anomalous anisotropic light Scattering in Ge-doped silica glass,” Phys. Rev. Lett.82(10), 2199–2202 (1999).
[CrossRef]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultra-short light pulses,” Phys. Rev. Lett.91(24), 2474051–2474054 (2003).
[CrossRef]

Other (2)

M. Lancry, F. Brisset, and B. Poumellec, “In the heart of nanogratings made up during femtosecond laser irradiation,” Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides 2010BWC3, Optical Society of America, 2010.

M. Lancry, B. Poumellec, K. Cook, and J. Canning, “Nanogratings and molecular oxygen formation during femtosecond laser irradiation in silica”, Quantum Electronics Conference & Lasers and Electro-Optics (CLEO/IQEC/PACIFIC RIM)208–210, IEEE, 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM images of periodic nanostructures of laser induced birefringent structures in: a) ULE (EP = 200 nJ; τ = 120 fs) b) Borofloat (EP = 400 nJ; τ = 400 fs). A thin gold coating was used to prevent charge accumulation.

Fig. 2
Fig. 2

Dependence of the retardation on the pulse duration for different glasses for an illumination wavelength of 633 nm. For the inscription we used a pulse energy of 400 nJ. The dashed lines are a guide to the eye.

Fig. 3
Fig. 3

Absorption spectra of Borofloat and ULE containing nanogratings and untreated glasses as reference (dashed lines). The inset shows an image of the inscribed modification in ULE.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 2 sin 2 ( 2 ϑ ) [ 1 cos ( δ ) ]

Metrics