Abstract

We investigate the effect of grating design on surface enhanced Raman scattering (SERS) intensity using patterned nanoporous gold (P-NPG) films. The SERS response is systematically engineered by tuning the parameters of gratings imprinted on the nanoporous gold films, including grating period, duty cycle, and height. Compared to conventional NPG films, where the localized surface plasmon dominates the strong SERS response, the significantly enhanced SERS response from our P-NPG structures primarily arises from efficient activation of a surface plasmon polariton and its coupling with the localized surface plasmon mode. The P-NPG SERS substrates exhibit large area uniform enhancement factors near 108.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” Top. Appl. Phys.103, 1–17 (2006).
    [CrossRef]
  2. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27(4), 241–250 (1998).
    [CrossRef]
  3. S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
    [CrossRef]
  4. Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
    [CrossRef]
  5. M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
    [CrossRef] [PubMed]
  6. M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
    [CrossRef]
  7. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
    [CrossRef] [PubMed]
  8. C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
    [CrossRef] [PubMed]
  9. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
    [CrossRef] [PubMed]
  10. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B61(20), 14078–14088 (2000).
    [CrossRef]
  11. Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010).
    [CrossRef] [PubMed]
  12. H. Y. Wu and B. T. Cunningham, “Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering,” Appl. Phys. Lett.98(15), 153103 (2011).
    [CrossRef]
  13. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
    [CrossRef]
  14. X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
    [CrossRef]
  15. X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
    [CrossRef]
  16. L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
    [CrossRef] [PubMed]
  17. H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
    [PubMed]
  18. L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett.92(9), 093113 (2008).
    [CrossRef]
  19. F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
    [CrossRef] [PubMed]
  20. G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express19(14), 13164–13170 (2011).
    [CrossRef] [PubMed]
  21. Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
    [CrossRef] [PubMed]
  22. P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
    [CrossRef] [PubMed]
  23. J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
    [CrossRef] [PubMed]
  24. Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
    [CrossRef]
  25. S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
    [CrossRef] [PubMed]
  26. A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19(2), 787–813 (2011).
    [CrossRef] [PubMed]
  27. M. Nevière and R. Reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman-scattering,” Phys. Rev. B26(10), 5403–5408 (1982).
    [CrossRef]
  28. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
    [CrossRef] [PubMed]
  29. M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).
  30. K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem.63(19), 2196–2199 (1991).
    [CrossRef]
  31. W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
    [CrossRef]
  32. R. A. Álvarez-Puebla, “Effects of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett.3(7), 857–866 (2012).
    [CrossRef]

2012 (2)

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

R. A. Álvarez-Puebla, “Effects of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett.3(7), 857–866 (2012).
[CrossRef]

2011 (9)

A. Dhawan, M. Canva, and T. Vo-Dinh, “Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing,” Opt. Express19(2), 787–813 (2011).
[CrossRef] [PubMed]

G. Ruffato, F. Romanato, D. Garoli, and S. Cattarin, “Nanoporous gold plasmonic structures for sensing applications,” Opt. Express19(14), 13164–13170 (2011).
[CrossRef] [PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
[CrossRef] [PubMed]

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

H. Y. Wu and B. T. Cunningham, “Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering,” Appl. Phys. Lett.98(15), 153103 (2011).
[CrossRef]

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
[CrossRef] [PubMed]

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

2010 (5)

Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
[CrossRef]

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

2009 (1)

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

2008 (4)

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett.92(9), 093113 (2008).
[CrossRef]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
[CrossRef] [PubMed]

2007 (1)

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

2006 (2)

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” Top. Appl. Phys.103, 1–17 (2006).
[CrossRef]

2003 (1)

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

2000 (1)

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B61(20), 14078–14088 (2000).
[CrossRef]

1998 (3)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27(4), 241–250 (1998).
[CrossRef]

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

1995 (1)

M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).

1991 (1)

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem.63(19), 2196–2199 (1991).
[CrossRef]

1982 (1)

M. Nevière and R. Reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman-scattering,” Phys. Rev. B26(10), 5403–5408 (1982).
[CrossRef]

Ahl, S.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Álvarez-Puebla, R. A.

R. A. Álvarez-Puebla, “Effects of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett.3(7), 857–866 (2012).
[CrossRef]

Alves, C. A.

M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).

Ayas, S.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Banaee, M. G.

Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Behymer, E.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Berlin, A. A.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

Berron, B. J.

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

Bond, T. C.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Bora, M.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Britten, J. A.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Cai, W. B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Cai, X. W.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Caminade, A. M.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27(4), 241–250 (1998).
[CrossRef]

Canva, M.

Carron, K. T.

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem.63(19), 2196–2199 (1991).
[CrossRef]

Cattarin, S.

Chan, S.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

Chang, A. S. P.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Chen, L. Y.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

Chen, M. W.

L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
[CrossRef] [PubMed]

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett.92(9), 093113 (2008).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

Chen, Y.

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

Choi, C. J.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Chu, Y. Z.

Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Ciesielski, P. N.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

Cliffel, D. E.

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

Cunningham, B. T.

H. Y. Wu and B. T. Cunningham, “Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering,” Appl. Phys. Lett.98(15), 153103 (2011).
[CrossRef]

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Dâna, A.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Dhawan, A.

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
[CrossRef] [PubMed]

Dirisaglik, F.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Ekiz, O. O.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Erlebacher, J.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Escobar, C. A.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

Faulkner, C. J.

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

Fujita, T.

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

Garoli, D.

Gartia, M. R.

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Guan, P. F.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

Güner, H.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Hill, W.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

Hirata, A.

L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
[CrossRef] [PubMed]

Im, H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Inoue, A.

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett.92(9), 093113 (2008).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

Inouye, Y. S.

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

Iwasaki, H. S.

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

Jennings, G. K.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

Jiang, J.

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

Jiao, Y.

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
[CrossRef]

Kahl, M.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B61(20), 14078–14088 (2000).
[CrossRef]

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27(4), 241–250 (1998).
[CrossRef]

Knoll, W.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Koktysh, D. S.

Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
[CrossRef]

Koo, T. W.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

Kostrewa, S.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Kwon, S.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

Lamp, B. D.

M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).

Lang, X. Y.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
[CrossRef] [PubMed]

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

Larson, C.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lee, L. P.

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

Li, X. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Lindquist, N. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Liscidini, M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
[CrossRef] [PubMed]

Liu, F. M.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Liu, G. L.

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Liu, H. W.

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

Majoral, J. P.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Miles, R.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” Top. Appl. Phys.103, 1–17 (2006).
[CrossRef]

Mullen, K. I.

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem.63(19), 2196–2199 (1991).
[CrossRef]

Nevière, M.

M. Nevière and R. Reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman-scattering,” Phys. Rev. B26(10), 5403–5408 (1982).
[CrossRef]

Nguyen, H.

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Oh, S. H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Okyay, A. K.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Phambu, N.

Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
[CrossRef]

Porter, M. D.

M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).

Qian, L. H.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett.92(9), 093113 (2008).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

Reinisch, R.

M. Nevière and R. Reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman-scattering,” Phys. Rev. B26(10), 5403–5408 (1982).
[CrossRef]

Ren, B.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Romanato, F.

Ruffato, G.

Ryckman, J. D.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
[CrossRef] [PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

Scott, A. M.

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
[CrossRef] [PubMed]

She, C. X.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Sipe, J. E.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
[CrossRef] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
[CrossRef] [PubMed]

Tian, Z. Q.

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Türker, B.

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
[CrossRef] [PubMed]

Viets, C.

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

Vo-Dinh, T.

Voges, E.

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B61(20), 14078–14088 (2000).
[CrossRef]

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

Walczak, M. M.

M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Weiss, S. M.

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
[CrossRef] [PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
[CrossRef]

Wu, H. Y.

H. Y. Wu and B. T. Cunningham, “Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering,” Appl. Phys. Lett.98(15), 153103 (2011).
[CrossRef]

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Xu, Z.

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Xu, Z. D.

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Xue, Q. K.

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

Yamaguchi, Y.

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

Yan, X. Q.

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

Yu, F.

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

Zhang, L.

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
[CrossRef] [PubMed]

Zi, J.

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

ACS Nano (5)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Y. Z. Chu, M. G. Banaee, and K. B. Crozier, “Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and stokes frequencies,” ACS Nano4(5), 2804–2810 (2010).
[CrossRef] [PubMed]

L. Zhang, X. Y. Lang, A. Hirata, and M. W. Chen, “Wrinkled nanoporous gold films with ultrahigh SERS enhancement,” ACS Nano5(6), 4407–4413 (2011).
[CrossRef] [PubMed]

P. N. Ciesielski, A. M. Scott, C. J. Faulkner, B. J. Berron, D. E. Cliffel, and G. K. Jennings, “Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I,” ACS Nano2(12), 2465–2472 (2008).
[CrossRef] [PubMed]

S. Ayas, H. Güner, B. Türker, O. O. Ekiz, F. Dirisaglik, A. K. Okyay, and A. Dâna, “Raman enhancement on a broadband meta-surface,” ACS Nano6(8), 6852–6861 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

S. Chan, S. Kwon, T. W. Koo, L. P. Lee, and A. A. Berlin, “Surface enhanced Raman scattering of small molecules from silver-coated silicon nanopores,” Adv. Mater.15(19), 1595–1598 (2003).
[CrossRef]

Anal. Chem. (2)

F. Yu, S. Ahl, A. M. Caminade, J. P. Majoral, W. Knoll, and J. Erlebacher, “Simultaneous excitation of propagating and localized surface plasmon resonance in nanoporous gold membranes,” Anal. Chem.78(20), 7346–7350 (2006).
[CrossRef] [PubMed]

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes,” Anal. Chem.63(19), 2196–2199 (1991).
[CrossRef]

Annu Rev Anal Chem (Palo Alto Calif) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 601–626 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

L. H. Qian, A. Inoue, and M. W. Chen, “Large surface enhanced Raman scattering enhancements from fracture surfaces of nanoporous gold,” Appl. Phys. Lett.92(9), 093113 (2008).
[CrossRef]

Z. D. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett.98(24), 241904 (2011).
[CrossRef]

Y. Jiao, D. S. Koktysh, N. Phambu, and S. M. Weiss, “Dual-mode sensing platform based on colloidal gold functionalized porous silicon,” Appl. Phys. Lett.97(15), 153125 (2010).
[CrossRef]

H. Y. Wu and B. T. Cunningham, “Plasmonic coupling of SiO2-Ag “post-cap” nanostructures and silver film for surface enhanced Raman scattering,” Appl. Phys. Lett.98(15), 153103 (2011).
[CrossRef]

L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, “Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements,” Appl. Phys. Lett.90(15), 153120 (2007).
[CrossRef]

X. Y. Lang, L. Y. Chen, P. F. Guan, T. Fujita, and M. W. Chen, “Geometric effect on surface enhanced Raman scattering of nanoporous gold: Improving Raman scattering by tailoring ligament and nanopore ratios,” Appl. Phys. Lett.94(21), 213109 (2009).
[CrossRef]

X. Y. Lang, L. H. Qian, P. F. Guan, J. Zi, and M. W. Chen, “Localized surface plasmon resonance of nanoporous gold,” Appl. Phys. Lett.98(9), 093701 (2011).
[CrossRef]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev.27(4), 241–250 (1998).
[CrossRef]

J. Electroanal. Chem. (1)

M. M. Walczak, C. A. Alves, B. D. Lamp, and M. D. Porter, “Electrochemical and x-ray photoelectron spectroscopic evidence for differences in the binding-sites of alkanethiolate monolayers chemisorbed at gold,” J. Electroanal. Chem.396(1–2), 103–114 (1995).

J. Phys. Chem. Lett. (1)

R. A. Álvarez-Puebla, “Effects of the excitation wavelength on the SERS spectrum,” J. Phys. Chem. Lett.3(7), 857–866 (2012).
[CrossRef]

Nano Lett. (2)

J. D. Ryckman, M. Liscidini, J. E. Sipe, and S. M. Weiss, “Direct imprinting of porous substrates: A rapid and low-cost approach for patterning porous nanomaterials,” Nano Lett.11(5), 1857–1862 (2011).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett.10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Nanotechnology (3)

C. J. Choi, Z. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

M. R. Gartia, Z. D. Xu, E. Behymer, H. Nguyen, J. A. Britten, C. Larson, R. Miles, M. Bora, A. S. P. Chang, T. C. Bond, and G. L. Liu, “Rigorous surface enhanced Raman spectral characterization of large-area high-uniformity silver-coated tapered silica nanopillar arrays,” Nanotechnology21(39), 395701 (2010).
[CrossRef] [PubMed]

Y. Jiao, J. D. Ryckman, P. N. Ciesielski, C. A. Escobar, G. K. Jennings, and S. M. Weiss, “Patterned nanoporous gold as an effective SERS template,” Nanotechnology22(29), 295302 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (2)

M. Nevière and R. Reinisch, “Electromagnetic study of the surface-plasmon-resonance contribution to surface-enhanced Raman-scattering,” Phys. Rev. B26(10), 5403–5408 (1982).
[CrossRef]

M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B61(20), 14078–14088 (2000).
[CrossRef]

Sci Rep (1)

H. W. Liu, L. Zhang, X. Y. Lang, Y. Yamaguchi, H. S. Iwasaki, Y. S. Inouye, Q. K. Xue, and M. W. Chen, “Single molecule detection from a large-scale SERS-active Au₇₉Ag₂₁ substrate,” Sci Rep1(5), 112 (2011).
[PubMed]

Sens. Actuators B Chem. (1)

M. Kahl, E. Voges, S. Kostrewa, C. Viets, and W. Hill, “Periodically structured metallic substrates for SERS,” Sens. Actuators B Chem.51(1–3), 285–291 (1998).
[CrossRef]

Surf. Sci. (1)

W. B. Cai, B. Ren, X. Q. Li, C. X. She, F. M. Liu, X. W. Cai, and Z. Q. Tian, “Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment,” Surf. Sci.406(1–3), 9–22 (1998).
[CrossRef]

Top. Appl. Phys. (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief perspective,” Top. Appl. Phys.103, 1–17 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic configuration of 2D grating-type P-NPG substrates consisting of NPG regions and D-NPG regions (f: duty cycle, Λ: period, h: depth). (b) Plan-view SEM image showing a large area P-NPG film with 650 nm period and ~60% duty cycle. (c) – (e) Zoomed-in plan-view SEM images of 650 nm period P-NPG films with decreasing duty cycles of ~90%, 75%, and 60%, respectively.

Fig. 2
Fig. 2

(a) Measured dielectric constants of Au (dashed curve) and NPG (solid curve) as a function of wavelength. (b) Simulated far field absorbance curves for 2D grating-type P-NPG substrates (Λ = 650 nm, f = 60%) with various grating depths (h = 20, 40, and 60 nm). Resonances indicate the presence of SPPs. (c) Simulated near field intensity |E|2/|E0|2 within a single grating period and simulated absorbance spectra for 2D grating-type P-NPG substrates (Λ = 650 nm, h = 60 nm) with various duty cycles (f = 30%, 60%, and 90%). (d) Measured absorbance spectra of NPG, D-NPG, and P-NPG. All films exhibit a LSP resonance but only P-NPG exhibits a SPP resonance.

Fig. 3
Fig. 3

(a) - (c) Relationship between SERS intensity and duty cycle with respect to various grating depths for benzenethiol bands 414 cm−1, 1070 cm−1, and 1570 cm−1, respectively. (d) Summary of SERS spectra of benzenethiol adsorbed on three optimized substrates with various grating depths. (e) SERS intensity distribution of benzenethiol adsorbed on 2D P-NPG substrates with h = 70 nm and various duty cycles ranging from ~15% to 90%. The three bands shown in (a) - (c) are indicated with dotted boxes.

Fig. 4
Fig. 4

Comparison of SERS spectra between optimized 2D P-NPG substrate (black curve) and a reference sample (500 µm thick pure benzenethiol in PDMS cell, red curve). 2D P-NPG shows an EF of ~0.5 × 108.

Fig. 5
Fig. 5

Voltammetric scans for the reductive desorption of benzenethiol molecules from planar gold and stamped NPG. The scan rate was 200 mV/s. Desorption was performed in a 0.5 M KOH electrolyte solution.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF= I 2DPNPG I ref N ref N 2DPNPG

Metrics