Abstract

Heavily erbium-doped low-hydroxyl fluorotellurite glasses with molar compositions of (85.7−x)TeO2 + xBaF2 + 4.8Na2CO3 + 9.5Er2O3 (x = 38.1, 28.6, 19) were fabricated. The maximum doping concentration of erbium ions was up to 19 mol % by introducing BaF2 into the tellurite glass system. Under 980 nm excitation, intense emissions around 2.7 μm from the 4I11/24I13/2 transition of Er3+ ions were observed in these glasses. The efficient mid-infrared emission can be attributed to the existence of cross relaxation (CR) 4I13/24I15/2 (Er3+): 4I13/24I9/2 (Er3+) caused by high erbium concentration, low hydroxyl content, and low phonon energy. The stimulated emission cross section at 2.7 μm of 47.6TeO2 + 38.1BaF2 + 4.8Na2CO3 + 9.5Er2O3 glass was calculated as 1.94 × 10−20 cm2. Our results indicate that it is a promising gain medium for 2.7 μm lasers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
    [CrossRef]
  2. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
    [CrossRef]
  3. G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
    [CrossRef]
  4. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).
  5. D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
    [CrossRef]
  6. Y. Guo, Y. Tian, L. Zhang, L. Hu, N. K. Chen, and J. Zhang, “Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength,” Opt. Lett.37(16), 3387–3389 (2012).
    [CrossRef] [PubMed]
  7. M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
    [CrossRef]
  8. T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012).
    [CrossRef] [PubMed]
  9. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009).
    [CrossRef] [PubMed]
  10. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er: ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett.35(23), 3943–3945 (2010).
    [CrossRef] [PubMed]
  11. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er: ZBLAN fiber laser at 2.8 μm,” Opt. Lett.36(15), 2812–2814 (2011).
    [CrossRef] [PubMed]
  12. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011).
    [CrossRef] [PubMed]
  13. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett.36(7), 1173–1175 (2011).
    [CrossRef] [PubMed]
  14. Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys.110(1), 013512 (2011).
    [CrossRef]
  15. Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett.37(2), 268–270 (2012).
    [CrossRef] [PubMed]
  16. R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys.111(3), 033524 (2012).
    [CrossRef]
  17. H. Zhan, Z. Zhou, J. He, and A. Lin, “Intense 2.7 µm emission of Er3+-doped water-free fluorotellurite glasses,” Opt. Lett.37(16), 3408–3410 (2012).
    [CrossRef] [PubMed]
  18. A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett.36(5), 740–742 (2011).
    [CrossRef] [PubMed]
  19. J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
    [CrossRef]
  20. S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997).
    [CrossRef]
  21. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
    [CrossRef]
  22. D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev.134(2A), A299–A306 (1964).
    [CrossRef]
  23. M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002).
    [CrossRef]
  24. G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
    [CrossRef]

2012

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Y. Guo, Y. Tian, L. Zhang, L. Hu, N. K. Chen, and J. Zhang, “Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength,” Opt. Lett.37(16), 3387–3389 (2012).
[CrossRef] [PubMed]

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012).
[CrossRef] [PubMed]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett.37(2), 268–270 (2012).
[CrossRef] [PubMed]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys.111(3), 033524 (2012).
[CrossRef]

H. Zhan, Z. Zhou, J. He, and A. Lin, “Intense 2.7 µm emission of Er3+-doped water-free fluorotellurite glasses,” Opt. Lett.37(16), 3408–3410 (2012).
[CrossRef] [PubMed]

2011

2010

2009

2003

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

2002

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002).
[CrossRef]

2001

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

1999

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

1997

S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997).
[CrossRef]

1995

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

1964

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev.134(2A), A299–A306 (1964).
[CrossRef]

Androz, G.

Baesso, M. L.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Beil, K.

Bell, M. J. V.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Bento, A. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Bernier, M.

Bunea, G.

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

Bunea, M.

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

Caron, N.

Chen, N. K.

Cryan, M. J.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

de Araujo, C. B.

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

de Sousa, D. F.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002).
[CrossRef]

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

Ehrt, D.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

Falquier, D. G.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002).
[CrossRef]

Faucher, D.

Ghisler, Ch.

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

Ghosh, A.

S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997).
[CrossRef]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Guo, Y.

Haldeman, A.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

Hashida, M.

Hazra, S.

S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997).
[CrossRef]

He, J.

Heard, P. J.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Hirokane, M.

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Hu, L.

Huber, G.

Jackson, J.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

Jerez, V. A.

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

Kränkel, C.

Li, M.

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett.37(2), 268–270 (2012).
[CrossRef] [PubMed]

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys.110(1), 013512 (2011).
[CrossRef]

Li, T.

Lin, A.

Lüthy, W.

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

Mandal, S.

S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997).
[CrossRef]

Massera, J.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev.134(2A), A299–A306 (1964).
[CrossRef]

Messaddeq, Y.

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

Miranda, L. C. M.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Murakami, M.

Murphy-Chutorian, E.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002).
[CrossRef]

Nash, G. R.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Nunes, L. A. O.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Petit, L.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

Philipps, J. F.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

Poirier, G.

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

Pollnau, M.

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

Poulain, M.

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

Przeslak, S. J. B.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Pugh, J. R.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Rarity, J. G.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Ribeiro, S. J. L.

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

Richardsonz, K.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

Rivero-Baleine, C.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

Ryasnyanskiy, A.

Sakabe, S.

Sampaio, J. A.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Sauerbrey, R.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

Shimizu, S.

Stokes, J. L.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

Tian, Y.

Y. Guo, Y. Tian, L. Zhang, L. Hu, N. K. Chen, and J. Zhang, “Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength,” Opt. Lett.37(16), 3387–3389 (2012).
[CrossRef] [PubMed]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys.111(3), 033524 (2012).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett.36(7), 1173–1175 (2011).
[CrossRef] [PubMed]

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys.110(1), 013512 (2011).
[CrossRef]

Tokita, S.

Töpfer, T.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

Toulouse, J.

Vallée, R.

Weber, H. P.

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

Xu, R.

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys.111(3), 033524 (2012).
[CrossRef]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett.36(7), 1173–1175 (2011).
[CrossRef] [PubMed]

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys.110(1), 013512 (2011).
[CrossRef]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

Zhan, H.

Zhang, J.

Zhang, L.

Zhou, Z.

Zonetti, L. F. C.

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

Appl. Phys. B

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, and R. Sauerbrey, “Spectroscopic and lasing properties of Er3+: Yb3+-doped fluoride phosphate glasses,” Appl. Phys. B72(4), 399–405 (2001).
[CrossRef]

Appl. Phys. Lett.

G. R. Nash, J. L. Stokes, J. R. Pugh, S. J. B. Przeslak, P. J. Heard, J. G. Rarity, and M. J. Cryan, “Single lateral mode mid-infrared laser diode using wavelength-scale modulation of the facet reflectivity,” Appl. Phys. Lett.100(1), 011103 (2012).
[CrossRef]

M. Pollnau, Ch. Ghisler, G. Bunea, M. Bunea, W. Lüthy, and H. P. Weber, “150 mW unsaturated output power at 3 μm from a single-mode-fiber erbium cascade laser,” Appl. Phys. Lett.66(26), 3564–3566 (1995).
[CrossRef]

D. F. de Sousa, L. F. C. Zonetti, M. J. V. Bell, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, “On the observation of 2.8 μm emission from diode-pumped Er3+- and Yb3+-doped low silica calcium aluminate glasses,” Appl. Phys. Lett.74(7), 908–910 (1999).
[CrossRef]

IEEE J. Quantum Electron.

M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental Limitations of the McCumber Relation Applied to Er-Doped Silica and Other Amorphous-Host Lasers,” IEEE J. Quantum Electron.38(12), 1629–1637 (2002).
[CrossRef]

J. Am. Ceram. Soc.

J. Massera, A. Haldeman, J. Jackson, C. Rivero-Baleine, L. Petit, and K. Richardsonz, “Processing of Tellurite-Based Glass with Low OH− Content,” J. Am. Ceram. Soc.94(1), 130–136 (2011).
[CrossRef]

J. Appl. Phys.

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Origin of 2.7 μm luminescence and energy transfer process of Er3+: 4I11/2→4I13/2 transition in Er3+/Yb3+ doped germanate glasses,” J. Appl. Phys.111(3), 033524 (2012).
[CrossRef]

Y. Guo, M. Li, Y. Tian, R. Xu, L. Hu, and J. Zhang, “Enhanced 2.7 μm emission and energy transfer mechanism of Nd3+/Er3+ co-doped sodium tellurite glasses,” J. Appl. Phys.110(1), 013512 (2011).
[CrossRef]

G. Poirier, V. A. Jerez, C. B. de Araujo, Y. Messaddeq, S. J. L. Ribeiro, and M. Poulain, “Optical spectroscopy and frequency upconversion properties of Tm3+ doped tungstate fluorophosphates glasses,” J. Appl. Phys.93(3), 1493–1497 (2003).
[CrossRef]

Nat. Photonics

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics6(7), 432–439 (2012).
[CrossRef]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics6(7), 423–431 (2012).
[CrossRef]

Opt. Lett.

T. Li, K. Beil, C. Kränkel, and G. Huber, “Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm,” Opt. Lett.37(13), 2568–2570 (2012).
[CrossRef] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser,” Opt. Lett.34(20), 3062–3064 (2009).
[CrossRef] [PubMed]

S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “Stable 10 W Er: ZBLAN fiber laser operating at 2.71-2.88 μm,” Opt. Lett.35(23), 3943–3945 (2010).
[CrossRef] [PubMed]

S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, “12 W Q-switched Er: ZBLAN fiber laser at 2.8 μm,” Opt. Lett.36(15), 2812–2814 (2011).
[CrossRef] [PubMed]

D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011).
[CrossRef] [PubMed]

R. Xu, Y. Tian, L. Hu, and J. Zhang, “Enhanced emission of 2.7 μm pumped by laser diode from Er3+/Pr3+-codoped germanate glasses,” Opt. Lett.36(7), 1173–1175 (2011).
[CrossRef] [PubMed]

Y. Guo, M. Li, L. Hu, and J. Zhang, “Intense 2.7 µm emission and structural origin in Er3+-doped bismuthate (Bi2O3-GeO2-Ga2O3-Na2O) glass,” Opt. Lett.37(2), 268–270 (2012).
[CrossRef] [PubMed]

Y. Guo, Y. Tian, L. Zhang, L. Hu, N. K. Chen, and J. Zhang, “Pr3+-sensitized Er3+-doped bismuthate glass for generating high inversion rates at 2.7 µm wavelength,” Opt. Lett.37(16), 3387–3389 (2012).
[CrossRef] [PubMed]

H. Zhan, Z. Zhou, J. He, and A. Lin, “Intense 2.7 µm emission of Er3+-doped water-free fluorotellurite glasses,” Opt. Lett.37(16), 3408–3410 (2012).
[CrossRef] [PubMed]

A. Lin, A. Ryasnyanskiy, and J. Toulouse, “Fabrication and characterization of a water-free mid-infrared fluorotellurite glass,” Opt. Lett.36(5), 740–742 (2011).
[CrossRef] [PubMed]

Phys. Rev.

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev.134(2A), A299–A306 (1964).
[CrossRef]

Phys. Rev. B

S. Hazra, S. Mandal, and A. Ghosh, “Properties of unconventional lithium bismuthate glasses,” Phys. Rev. B56(13), 8021–8025 (1997).
[CrossRef]

Other

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photos of TBNE glasses.

Fig. 2
Fig. 2

Transmission spectra of low-hydroxyl TBNE glasses with different BaF2 concentrations (9.5 mol % Er2O3).

Fig. 3
Fig. 3

(a) 2.7 μm emission spectra (Er3+: 4I11/24I13/2 transition) of low-hydroxyl TBNE glasses (19 mol % Er3+) with different BaF2 concentrations. Inset: Dependence of 2.7 μm emission integral area on BaF2 concentrations. (b) 2.7 μm emission spectra of TBNE-1 glasses with different Er3+ concentrations. Inset: Dependence of 2.7 μm emission integral area on Er3+ concentration.

Fig. 4
Fig. 4

Energy level diagram and mechanism of the IR emissions of heavily erbium doped low-hydroxyl TBNE glasses.

Fig. 5
Fig. 5

805 nm emission spectra of low-hydroxyl TBNE-1 glasses with different Er3+ doping concentrations. Inset: Dependence of 805 nm emission integral area on Er3+ concentrations.

Fig. 6
Fig. 6

(a) Calculated stimulated emission and absorption cross section spectra of 2.7 μm emission in TBNE-1e glass. (b) Calculated gain cross section spectra of 2.7 μm emission in TBNE-1e glass.

Tables (3)

Tables Icon

Table 1 Refractive indexes of TBNE glasses at 1550 nm with various BaF2 concentrations.

Tables Icon

Table 2 Refractive indexes of TBNE glasses at 1550 nm with various Er2O3 concentrations.

Tables Icon

Table 3 Energy gap (ΔE), spontaneous transition probability (A), radiative lifetime (τr), branching ratio (β) and the J-O parameters (Ωλ) of the present TBNE-1e glass for various selected levels of doped Er3+ ions.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

α OH =ln( T 0 /T)/l,
ν=(1/2π) κ/μ ,
m c m a /( m c + m a ),
σ em = β λ 5 8πc n 2 τ r I(λ) λI(λ)dλ ,
σ ab = σ em × ZL ZU e ΔEhc λ 1 k B T ,
G(λ)=P× σ em (λ)(1P)× σ ab (λ),
S= 2303m c 2 Nπ e 2 ε i (σ)dσ=4.32× 10 9 ×A,
S= 8 π 2 mc 3h λ ¯ (2J+1) n ( n 2 +2 3n ) 2 λ=2,4,6 Ω λ | aJ U (λ) bJ' | 2 ,
A(JJ')= 64 π 4 e 2 3h(2J'+1) λ ¯ 3 ×n ( n 2 +2 3 ) 2 λ=2,4,6 Ω λ | aJ U (λ) bJ' | 2 ,
1 τ r = J A(JJ') ,
β(JJ')= A(JJ') J A(JJ') .

Metrics