Abstract

This paper focuses on a comparative study of optical, morphological, microstructural and microcompositional properties of typical InGaN samples which exhibit V-defects but also two additional surface defects features, referred to as inclusion#1 (Ic1) and inclusion#2 (Ic2). HR-XRD, AFM, SEM, STEM and EDX are used to characterize such defects. Furthermore, hyperspectral mapping, spot mode and depth-resolved CL measurements provided useful informations on the optical emission properties and microstructure. The main characteristic of Ic1 luminescence peak is a decrease in intensity and no obvious shift in the CL peak position when going from the outside to the middle of such defect. More interesting was Ic2 which is shown to be local 3D top surface In-rich InGaN domains embedded in an homogeneous InGaN matrix. In fact, this study pointed out that close to the interface GaN/InGaN, it exists a 30 nm thick fully strained InGaN layer with constant indium incorporation. As the growth proceeds spatial fluctuation of the In content is observed and local In-rich 3D domains are shown to emerge systematically around threading dislocations terminations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
    [CrossRef]
  2. E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
    [CrossRef]
  3. J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
    [CrossRef]
  4. X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
    [CrossRef]
  5. J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5, 2600111 (2013).
    [CrossRef]
  6. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110 (2011).
    [CrossRef]
  7. P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
    [CrossRef]
  8. G. B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth312, 735–749 (2010).
    [CrossRef]
  9. P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
    [CrossRef]
  10. F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
    [CrossRef]
  11. J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
    [CrossRef]
  12. M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
    [CrossRef]
  13. D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
    [CrossRef]
  14. S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
    [CrossRef]
  15. D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
    [CrossRef] [PubMed]
  16. K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
    [CrossRef]
  17. K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
    [CrossRef] [PubMed]
  18. S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
    [CrossRef]

2013

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5, 2600111 (2013).
[CrossRef]

2012

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

2011

J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110 (2011).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

2010

G. B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth312, 735–749 (2010).
[CrossRef]

2009

X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

2008

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

2007

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

2003

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

2002

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Abid, M.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Aimez, V.

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Al-Heji, A. A.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Alves, E.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Armour, E. A.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Bell, A.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

Bertram, F.

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Bruckbauer, J.

J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
[CrossRef]

Cai, J.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

Cai, X.-M.

X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Chen, X.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Chernyak, L.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Christen, J.

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Chung, S. J.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Correia, M. R.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Cruz, S. C.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

DenBaars, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

DenBaars, S. P.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Djebbour, Z.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Drouin, D.

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Edwards, P. R.

J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
[CrossRef]

Farrell, R. M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Feezell, D. F.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Florescu, D. I.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Franco, N.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Fujito, K.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Gautier, S.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Gauvin, R.

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Geng, L.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Gorge, V.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Hardy, M. T.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Hong, C. H.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Hsu, P. S.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Hurni, C. A.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

Iza, M.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Joly, D.

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Keller, S.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Koslow, I.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Lang, J. R.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

Largeau, L.

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Lee, D. S.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Lee, Y. S.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Liu, R.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Lu, D.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Martin, J.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Martin, R. W.

J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
[CrossRef]

Marui, H.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

Matioli, E.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

Mauguin, O.

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Merai, V. N.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Mishra, U.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Mishra, U. K.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Moudakir, T.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Nakagawa, Y.

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Nakamura, S.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Neufeld, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Neufeld, C. J.

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

ODonnell, K. P.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Omiya, H.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Orsal, G.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Ougazzaden, A.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Ould-Saad, S.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Pantzas, K.

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Park, J. Y.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Parkeh, A.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Patriarche, G.

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Pereira, E.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Pereira, S.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Ponce, F. A.

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Ponce, P. A.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

Ral Couture, A.

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Ramer, J. C.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Riemann, T.

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Romanov, A. E.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Sartel, C.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Senthil Kumar, M.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Sequeira, A. D.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Sirenko, A.

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Speck, J.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Speck, J. S.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

Srinivasan, S.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Stevens, M.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

Stringfellow, G. B.

G. B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth312, 735–749 (2010).
[CrossRef]

Suh, E. K.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Suresh, S.

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Sweeney, F.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Tanaka, S.

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Tansu, N.

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5, 2600111 (2013).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110 (2011).
[CrossRef]

Tastet, X.

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Ting, S. M.

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

Toledo, N. G.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

Trager-Cowan, C.

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

Troadec, D.

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Voss, P. L.

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Wang, T.

J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
[CrossRef]

Weisbuch, C.

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

Wu, F.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Young, E. C.

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

Zeng, S.-W.

X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Zhang, B.-P.

X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

Zhang, J.

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5, 2600111 (2013).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110 (2011).
[CrossRef]

Appl. Phys. Lett.

C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. DenBaars, and U. K. Mishra, “High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap,” Appl. Phys. Lett.93, 143502 (2008).
[CrossRef]

E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett.98, 021102 (2011).
[CrossRef]

J. R. Lang, C. J. Neufeld, C. A. Hurni, S. C. Cruz, E. Matioli, U. K. Mishra, and J. S. Speck, “High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy,” Appl. Phys. Lett.98, 131115 (2011).
[CrossRef]

X.-M. Cai, S.-W. Zeng, and B.-P. Zhang, “Fabrication and characterization of InGaN p-i-n homojunction solar cell,” Appl. Phys. Lett.95, 173504 (2009).
[CrossRef]

P. S. Hsu, M. T. Hardy, F. Wu, I. Koslow, E. C. Young, A. E. Romanov, K. Fujito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “444.9nm semipolar (1122) laser diode grown on an intentionally stress relaxed InGaN waveguiding layer,” Appl. Phys. Lett.100, 021104 (2012).
[CrossRef]

J. Bruckbauer, P. R. Edwards, T. Wang, and R. W. Martin, “High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures,” Appl. Phys. Lett.98, 141908 (2011).
[CrossRef]

D. I. Florescu, S. M. Ting, J. C. Ramer, D. S. Lee, V. N. Merai, A. Parkeh, D. Lu, E. A. Armour, and L. Chernyak, “Investigation of V-Defects and embedded inclusions in InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition on (0001) sapphire,” Appl. Phys. Lett.83, 33–35 (2003).
[CrossRef]

S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. ODonnell, E. Alves, N. Franco, and A. D. Sequeira, “Structural and optical properties of InGaN/GaN layers close to the critical layer thickness,” Appl. Phys. Lett.81, 1207–1209 (2002).
[CrossRef]

IEEE Photon. J.

J. Zhang and N. Tansu, “Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates,” IEEE Photon. J.5, 2600111 (2013).
[CrossRef]

J. Appl. Phys.

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys.110, 113110 (2011).
[CrossRef]

J. Cryst. Growth

G. B. Stringfellow, “Microstructures produced during the epitaxial growth of InGaN alloys,” J. Cryst. Growth312, 735–749 (2010).
[CrossRef]

S. Gautier, C. Sartel, S. Ould-Saad, J. Martin, A. Sirenko, and A. Ougazzaden, “GaN materials growth by MOVPE in a new-design reactor using DMHy and NH3,” J. Cryst. Growth298, 428–432 (2007).
[CrossRef]

Mater. Chem. Phys.

M. Senthil Kumar, Y. S. Lee, J. Y. Park, S. J. Chung, C. H. Hong, and E. K. Suh, “Surface morphological studies of green InGaN/GaN multi-quantum wells grown by using MOCVD,” Mater. Chem. Phys.113, 192–195 (2009).
[CrossRef]

Mater. Sci. Eng. B

F. Bertram, S. Srinivasan, R. Liu, L. Geng, F. A. Ponce, T. Riemann, J. Christen, S. Tanaka, H. Omiya, and Y. Nakagawa, “Spatial variation of luminescence of InGaN alloys measured by highly-spatially-resolved scanning cathodoluminescence,” Mater. Sci. Eng. B93, 19–23 (2002).
[CrossRef]

Nanotechnology

K. Pantzas, G. Patriarche, D. Troadec, S. Gautier, T. Moudakir, S. Suresh, L. Largeau, O. Mauguin, P. L. Voss, and A. Ougazzaden, “Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy,” Nanotechnology23, 455707 (2012).
[CrossRef] [PubMed]

Phys. Status Solidi A

K. Pantzas, G. Patriarche, G. Orsal, S. Gautier, T. Moudakir, M. Abid, V. Gorge, Z. Djebbour, P. L. Voss, and A. Ougazzaden, “Investigation of a relaxation mechanism specific to InGaN for improved MOVPE growth of nitride solar cell materials,” Phys. Status Solidi A209(1), 25–28 (2012).
[CrossRef]

Phys. Status Solidi B

P. A. Ponce, S. Srinivasan, A. Bell, L. Geng, R. Liu, M. Stevens, J. Cai, H. Omiya, H. Marui, and S. Tanaka, “Microstructure and electronic properties of InGaN alloys,” Phys. Status Solidi B240, 273–284 (2003).
[CrossRef]

Scanning

D. Drouin, A. Ral Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO V2.42—a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning29, 92–101 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) (11.4) reciprocal space map and (b) (00.2) XRD ω − 2θ scan and simulation fitted by X’Pert Epitaxy software.

Fig. 2
Fig. 2

(a) Typical SEM and (b) 5 × 5 μm2 AFM surface images. The solid lines on the 2D AFM image correspond to the AFM profile of Ic1 and Ic2 reported in the inset.

Fig. 3
Fig. 3

(a) Cross-section HAADF-STEM and (b) BF-STEM images.

Fig. 4
Fig. 4

(a) Cross-section HAADF-STEM image between inclusions and (b) corresponding indium content measured by EDX through line scan L1 and L2.

Fig. 5
Fig. 5

(a) Cross-section HAADF-STEM image for an area containing 3D domains (Ic2) and (b) corresponding indium content measured by EDX through lines scan L3 to L9.

Fig. 6
Fig. 6

Most representatives local CL spectra taken for twenty points along a line across the different surface defects features: (a) Ic1 and (b) Ic2 (the inset shows the line scan and the location of the four spots).

Fig. 7
Fig. 7

CL hyperspectral mapping taken for 10 x 10 spots with an integration time of 2s/point and an acceleration voltage of 4 keV. Green, blue, and red colors correspond to normalized luminescence intensity for wavelength λ = 407 nm, λ = 432 nm and λ = 477 nm, with a peak bandwidth of 32 nm, 28 nm and 50 nm, respectively.

Fig. 8
Fig. 8

Most representative local CL spectra taken at 4 keV and 5 keV electron beam energy: (a) outside and (b) inside of Ic2.

Metrics