Abstract

Phase-change materials (PCMs) have great potential in applications for data storage, optical switching and tunable photonic devices. However, heating the whole of the phase change material at a high speed presents a key challenge. Here, for the first time, we model the incorporation of the phase-change material (Ge2Sb2Te5) within a metamaterial perfect absorber (MMPA) and show that the temperature of amorphous Ge2Sb2Te5 can be raised from room temperature to > 900K (melting point of Ge2Sb2Te5) in just a few nanoseconds with a low light intensity of 150 W/m2, owing to the enhanced light absorption through strong plasmonic resonances in the absorber. Our structure is composed of an array of thin gold (Au) squares separated from a continuous Au film by a Ge2Sb2Te5 layer. A Finite Element Method photothermal model is used to study the temporal variation of temperature in the Ge2Sb2Te5 layer. It is also shown that an absorber with a widely tunable spectrum can be obtained by switching between the amorphous and crystalline states of Ge2Sb2Te5. The study lowers the power requirements for photonic devices based on a thermal phase change and paves the way for the realization of ultrafast photothermally tunable photonic devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
    [CrossRef] [PubMed]
  2. A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
    [CrossRef]
  3. J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
    [CrossRef] [PubMed]
  4. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
    [CrossRef] [PubMed]
  5. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
    [CrossRef] [PubMed]
  6. M. Wuttig and M. Salinga, “Phase-Change Materials: Fast transformers,” Nat. Mater.11(4), 270–271 (2012).
    [CrossRef] [PubMed]
  7. W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
    [CrossRef]
  8. G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
    [CrossRef]
  9. S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007).
    [CrossRef] [PubMed]
  10. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
    [CrossRef] [PubMed]
  11. T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
    [CrossRef]
  12. V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
    [CrossRef]
  13. K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express19(2), 1260–1270 (2011).
    [CrossRef] [PubMed]
  14. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
    [CrossRef] [PubMed]
  15. D. J. Shelton, K. R. Coffey, and G. D. Boreman, “Experimental demonstration of tunable phase in a thermochromic infrared-reflectarray metamaterial,” Opt. Express18(2), 1330–1335 (2010).
    [CrossRef] [PubMed]
  16. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  17. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
    [CrossRef] [PubMed]
  18. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]
  19. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
    [CrossRef]
  20. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  21. M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
    [CrossRef] [PubMed]
  22. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  23. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]
  24. T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
    [CrossRef]
  25. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
    [CrossRef] [PubMed]
  26. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express19(16), 15221–15228 (2011).
    [CrossRef] [PubMed]
  27. G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express20(16), 17503–17508 (2012).
    [CrossRef] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  29. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
    [CrossRef]
  30. M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
    [CrossRef]
  31. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
    [CrossRef]
  32. T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
    [CrossRef]
  33. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
    [CrossRef]
  34. L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
    [CrossRef] [PubMed]
  35. C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
    [CrossRef] [PubMed]
  36. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
    [CrossRef]

2013

2012

G. Dayal and S. A. Ramakrishna, “Design of highly absorbing metamaterials for Infrared frequencies,” Opt. Express20(16), 17503–17508 (2012).
[CrossRef] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

M. Wuttig and M. Salinga, “Phase-Change Materials: Fast transformers,” Nat. Mater.11(4), 270–271 (2012).
[CrossRef] [PubMed]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
[CrossRef] [PubMed]

2011

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
[CrossRef] [PubMed]

K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express19(2), 1260–1270 (2011).
[CrossRef] [PubMed]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. C. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express19(16), 15221–15228 (2011).
[CrossRef] [PubMed]

2010

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

D. J. Shelton, K. R. Coffey, and G. D. Boreman, “Experimental demonstration of tunable phase in a thermochromic infrared-reflectarray metamaterial,” Opt. Express18(2), 1330–1335 (2010).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

2009

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

2008

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

2007

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

2006

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

2005

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

2001

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
[CrossRef]

1999

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Agarwal, R.

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007).
[CrossRef] [PubMed]

Baba, T.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Benvenuti, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
[CrossRef]

Boreman, G. D.

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Bruns, G.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Cao, T.

Chen, G.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

Chen, J.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Chen, S.

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Cheng, Y.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Cobley, C. M.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Coffey, K. R.

Cryan, M. J.

Dayal, G.

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Du, A. Y.

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Estrada, D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Feng, Q.

Fons, P.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Friedrich, I.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
[CrossRef]

Fukaya, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

García-Meca, C.

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Gholipour, B.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Greer, A. L.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Hao, J.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Hao, Q.

Happ, T. D.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Hase, M.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Hewak, D. W.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Hu, C.

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Huang, T. J.

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Hui, P.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jung, Y.

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007).
[CrossRef] [PubMed]

Khoo, I. C.

Kim, C.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Kiraly, B.

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Kolobov, A. V.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Krbal, M.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Kund, M.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Kuwahara, M.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Lacaita, A. L.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
[CrossRef]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Lee, H. K.

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Lee, S. H.

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007).
[CrossRef] [PubMed]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Li, J. M.

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Liao, A. D.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Lim, K. G.

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Luo, X.

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Makino, K.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Martí, J.

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Martínez, A.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

Merkelbach, P.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Miao, X. S.

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Orava, J.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Philipp, J. B.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Pirovano, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
[CrossRef]

Pop, E.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Pu, M.

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Qiu, C. W.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Qiu, M.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Ramakrishna, S. A.

Redaelli, A.

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
[CrossRef]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Rodríguez-Fortuño, F. J.

C. García-Meca, R. Ortuño, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Double-negative polarization-independent fishnet metamaterial in the visible spectrum,” Opt. Lett.34(10), 1603–1605 (2009).
[CrossRef] [PubMed]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

Rycenga, M.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Salinga, M.

M. Wuttig and M. Salinga, “Phase-Change Materials: Fast transformers,” Nat. Mater.11(4), 270–271 (2012).
[CrossRef] [PubMed]

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Schlockermann, C.

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

Schwartz, A. G.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Shelton, D. J.

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Simpson, R. E.

T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
[CrossRef]

T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
[CrossRef]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Smith, C. E.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Song, K. H.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Suzuki, O.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Taketoshi, N.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Tan, P. K.

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Tanida, H.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Tominaga, J.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express19(2), 1260–1270 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Tung, C. H.

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Uruga, T.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Wang, L. V.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

Weidenhof, V.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Wu, Y. H.

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

Wuttig, M.

M. Wuttig and M. Salinga, “Phase-Change Materials: Fast transformers,” Nat. Mater.11(4), 270–271 (2012).
[CrossRef] [PubMed]

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
[CrossRef]

Xia, Y.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Xie, J.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Xiong, F.

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Yagi, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Yamakawa, Y.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Yavuz, M. S.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Ye, H.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Yeo, S. P.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

Zhang, B.

Zhang, L.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
[CrossRef]

Zhang, Q.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

Zhao, Y.

Zheludev, N. I.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

Ziegler, S.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zouhdi, S.

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

ACS Nano

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond Photothermal Effects in Plasmonic Nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett.96(25), 251104 (2010).
[CrossRef]

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

W. J. Wang, L. P. Shi, R. Zhao, K. G. Lim, H. K. Lee, T. C. Chong, and Y. H. Wu, “Fast phase transitions induced by picosecond electrical pulses on phase change memory cells,” Appl. Phys. Lett.93(4), 043121 (2008).
[CrossRef]

G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T. D. Happ, J. B. Philipp, and M. Kund, “Nanosecond switching in GeTe phase change memory cells,” Appl. Phys. Lett.95(4), 043108 (2009).
[CrossRef]

T. C. Chong, L. P. Shi, R. Zhao, P. K. Tan, J. M. Li, H. K. Lee, X. S. Miao, A. Y. Du, and C. H. Tung, “Phase change random access memory cell with superlattice-like structure,” Appl. Phys. Lett.88(12), 122114 (2006).
[CrossRef]

J. Am. Chem. Soc.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” J. Am. Chem. Soc.128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Appl. Phys.

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, “Laser induced crystallization of amorphous Ge2Sb2Te5 films,” J. Appl. Phys.89(6), 3168–3176 (2001).
[CrossRef]

A. Redaelli, A. Pirovano, A. Benvenuti, and A. L. Lacaita, “Threshold switching and phase transition numerical models for phase change memory simulations,” J. Appl. Phys.103(11), 111101 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Microelectron. Eng.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5-8), 1792–1796 (2007).
[CrossRef]

Nano Lett.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared Perfect Absorber and Its Application as Plasmonic Sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Nanoscale

L. Zhang, J. Hao, H. Ye, S. P. Yeo, M. Qiu, S. Zouhdi, and C. W. Qiu, “Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light,” Nanoscale5(8), 3373–3379 (2013).
[CrossRef] [PubMed]

Nat. Mater.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. V. Wang, and Y. Xia, “Gold Nanocages Covered by Smart Polymers for Controlled Release with Near-Infrared Light,” Nat. Mater.8(12), 935–939 (2009).
[CrossRef] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultra-fast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

M. Wuttig and M. Salinga, “Phase-Change Materials: Fast transformers,” Nat. Mater.11(4), 270–271 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial Phase-Change Memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

S. H. Lee, Y. Jung, and R. Agarwal, “Highly scalable non-volatile and ultra-low-power phase-change nanowire memory,” Nat. Nanotechnol.2(10), 626–630 (2007).
[CrossRef] [PubMed]

Nature

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-Dimensional Optical Recording Mediated by Surface Plasmons in Gold Nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B79(7), 075425 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B83(16), 165107 (2011).
[CrossRef]

Phys. Rev. Lett.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett.95(13), 137404 (2005).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Science

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the Speed Limits of Phase-Change Memory,” Science336(6088), 1566–1569 (2012).
[CrossRef] [PubMed]

F. Xiong, A. D. Liao, D. Estrada, and E. Pop, “Low-power switching of Phase-Change Materials with carbon nanotube electrodes,” Science332(6029), 568–570 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of the metamaterial absorber and the incident light polarization configuration. The thicknesses of Au squares, Ge2Sb2Te5 spacer and Au mirror are 40nm, 40nm and 80nm respectively. The lattice constant in both x and y-directions is L = 1000nm and square dimension is dx = dy = 900nm. The whole structure resides on a BK7 silica glass with 200μm thickness. β is a cross-section plane of the structure. (b) Side view of the absorber. (c) Top view of the absorber. (d) Schematic of the single Ge2Sb2Te5 dielectric layer of 1000nm x 1000nm x 40nm deposited on a BK7 silica glass and the incident light polarization configuration. The thicknesses of Ge2Sb2Te5 and BK7 substrate is 40nm and 200μm respectively. β is a cross-section plane of the structure. (e) Side view of the Ge2Sb2Te5 dielectric layer.

Fig. 2
Fig. 2

Dielectric constant (a) ɛ1(ω) vs wavelength, (b) ɛ2(ω) vs wavelength for both amorphous and crystalline phases of Ge2Sb2Te5.

Fig. 3
Fig. 3

3D-FEM simulation of spectrum of (a) reflectance, (b) absorbance of both a metamaterial absorber and a single Ge2Sb2Te5 layer for the amorphous state at normal incidence.

Fig. 4
Fig. 4

3D-FEM simulation of (a) total electric field intensity distribution, (b) total magnetic field intensity distribution, (c) displacement current (JD) distribution for metamaterial absorber with amorphous phase at normal incident angle where λ = 2300nm; Simulation of (d) total electric field intensity distribution, (e) total magnetic field intensity distribution, (f) displacement current (JD) distribution for single Ge2Sb2Te5 layer with amorphous phase at normal incident angle where λ = 2300nm

Fig. 5
Fig. 5

(a) 3D-FEM simulation of heat power irradiating on metamaterials absorber and single Ge2Sb2Te5 layer with amorphous phase located at the beam center, where the solid line presents the heat power irradiating on the metamaterial absorber, the dash line presents the heat power irradiating on the single Ge2Sb2Te5 layer. (b)The solid line stands for the temperature of Ge2Sb2Te5 layer in metamaterials absorber during one pulse and the dash line presents temperature of the single Ge2Sb2Te5 dielectric layer during one pulse. (c)The cross section view of the unit cell of metamaterials absorber, where the color image indicates the temperature distribution and the arrows indicate the heat flux at 3.4ns. (d)The cross section view of the single Ge2Sb2Te5 layer, where the color image indicates the temperature distribution and the arrows indicate the heat flux at 3.4ns.

Fig. 6
Fig. 6

3D-FEM simulation of spectrum of (a) reflectance, (b) absorbance for different phases of Ge2Sb2Te5 at normal incidence

Fig. 7
Fig. 7

Representation of the dispersion relation of the Au-Ge2Sb2Te5-Au trilayers (left) and the absorbance of the MMPA (right) for both (a) amorphous Ge2Sb2Te5 and (b) crystalline Ge2Sb2Te5

Tables (1)

Tables Icon

Table 1 Material thermal properties used in the Heat transfer model

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )=1 ω p 2 [ ω( ω+i ω c ) ]
F l (r)= 2 P 0 π w 2 f r exp( 2 r 2 w 2 )
A( ω )=1R( ω )T( ω )
R( ω )= | r 1 | 2
T( ω )= | t 1 | 2
E= E x 2 +  E y 2 +  E z 2
H= H x 2 +  H y 2 +  H z 2   
    E th ( r )= R a × L 2 × F l ( r )
Q s ( r,t )= E th ( r ) 1 π τ exp( ( t t 0 ) 2 τ 2 )

Metrics