Abstract

The nano-photonic structures on the wings of three Papilionidae butterflies, Papilio blumei, Papilio ulysses and Papilio peranthus, were investigated. It was observed that the photonic structure is multi-layer with alternate air and cuticle layers forming one-dimensional photonic crystal. The multi-layer structures of the three butterflies differ subtly but are sufficient to account for the differences in their iridescence. The subtleness is more obvious in their polarized reflection results. We performed the simulation of polarized reflection using characteristic matrix method with parameters obtained from SEM images of butterfly wing scales’ cross-section. The simulated reflection spectra are matched with the experimental spectra to derive the effective refractive index of the air lamina in the butterfly wing scales. It shows that through varying the optical thickness and periodicities in air/cuticle bilayer stacks, the iridescent color of these three Papilionidae butterflies appear different. The result lays the foundation for mimicking the photonic structures of these butterflies.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  2. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem6(8), 1442–1459 (2005).
    [CrossRef] [PubMed]
  3. H. Ghiradella, “Light and color on the wing: structural colors in butterflies and moths,” Appl. Opt.30(24), 3492–3500 (1991).
    [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995), pp. 38–93.
  5. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 1–11.
  6. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
    [CrossRef]
  7. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express9(11), 567–578 (2001).
    [CrossRef] [PubMed]
  8. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
    [CrossRef] [PubMed]
  9. P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
    [CrossRef] [PubMed]
  10. H. Tada, S. E. Mann, I. N. Miaoulis, and P. Y. Wong, “Effects of a butterfly scale microstructure on the iridescent color observed at different angles,” Opt. Express5(4), 87–92 (1999).
    [CrossRef] [PubMed]
  11. E. Hecht, Optics (Addison Wesley, 2002), pp. 426–428.

2005 (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

2003 (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2002 (1)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

2001 (2)

1999 (2)

H. Tada, S. E. Mann, I. N. Miaoulis, and P. Y. Wong, “Effects of a butterfly scale microstructure on the iridescent color observed at different angles,” Opt. Express5(4), 87–92 (1999).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

1991 (1)

Enoch, S.

Ghiradella, H.

Gralak, B.

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Kinoshita, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Lawrence, C.

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Mann, S. E.

Miaoulis, I. N.

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Sambles, R.

Tada, H.

Tayeb, G.

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

P. Vukusic, R. Sambles, C. Lawrence, and G. Wakely, “Sculpted-multilayer optical effects in two species of Papilio butterfly,” Appl. Opt.40(7), 1116–1125 (2001).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Wakely, G.

Wong, P. Y.

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Yoshioka, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

Appl. Opt. (2)

ChemPhysChem (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” ChemPhysChem6(8), 1442–1459 (2005).
[CrossRef] [PubMed]

Nature (1)

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Proc. Biol. Sci. (2)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Biol. Sci.269(1499), 1417–1421 (2002).
[CrossRef] [PubMed]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Biol. Sci.266(1427), 1403–1411 (1999).
[CrossRef]

Other (3)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystal: Molding the Flow of Light (Princeton University Press, 1995), pp. 38–93.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001), pp. 1–11.

E. Hecht, Optics (Addison Wesley, 2002), pp. 426–428.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Normal viewing of P. peranthus, (b) normal viewing of P. blumei, (c) normal viewing of P. ulysses, (d) side-viewing of P. ulysses.

Fig. 2
Fig. 2

Scanning Electron Microscope image of P. ulysses’s wing showing there are two kinds of scale; the serrated scale which is non-reflecting and the smooth edge scale which is responsible for reflecting the color. Inset shows the optical image of the P. ulysses’s wing using optical microscope.

Fig. 3
Fig. 3

Cross-section of scale in P. blumei’s wing. It shows multi-layer of cuticles and thinly filled air laminae acting as Bragg Reflectors. The bottom part of the cross-section is in fact top of the scale and its surface has complex pattern on it.

Fig. 4
Fig. 4

Experimental reflection spectra of (a) P. ulysses, (b) P. blumei, and (c) P. peranthus wing as function of view angle. It shows the dispersive characteristics of the wing as spectra peaks blue shift with viewing angle. The dispersion curves of (d) P. ulysses, (e) P. blumei, and (f) P. peranthus, showing blue shift of the reflection peak as a function of viewing angle. The red dots are the experimental points and the open squares are the simulation points.

Fig. 5
Fig. 5

The color coordinates of P. ulysses, P. blumei, and P. peranthus, are mapped onto the CIE (Commission Internationale d’Eclairage) chart and they show the color shifting trend of blumei, ulysses and peranthus as the viewing angle increases. Inset shows the incident plane of the reflectance measurement.

Tables (1)

Tables Icon

Table 1 Summary of the Average Thicknesses and Optical Thicknesses of Cuticle and Air Laminae for P. ulysses, P. blumei and P. peranthus*

Metrics