Abstract

First-principle study of possible bismuth-related centers in SiO2 and GeO2 glass model hosts is performed and the results are compared with the experimental data. The following centers are modeled: trivalent and divalent Bi substitutional centers; BiO interstitial molecule; interstitial ion, Bi+, and atom, Bi0; Bi··· ≡Si–Si≡ and Bi··· ≡Ge–Ge≡ complexes formed by interstitial Bi atoms and glass intrinsic defects, ≡Si–Si≡ or ≡Ge–Ge≡ oxygen vacancies; interstitial dimers, Bi20 and Bi2. Experimental data available on bismuth-related IR luminescence in SiO2:Bi and GeO2:Bi glasses, visible (red) luminescence in SiO2:Bi glass and luminescence excitation are analyzed. A comparison of calculated spectral properties of bismuth-related centers with the experimental data shows that the IR luminescence in SiO2:Bi and GeO2:Bi is most likely caused by Bi··· ≡Si–Si≡ and Bi··· ≡Ge–Ge≡ complexes, and divalent Bi substitutional center is responsible for the red luminescence in SiO2:Bi.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
    [CrossRef]
  2. E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology31(4), 681–688 (2013).
    [CrossRef]
  3. H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967).
    [CrossRef]
  4. H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
    [CrossRef] [PubMed]
  5. H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
    [CrossRef]
  6. A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
    [CrossRef]
  7. H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
    [CrossRef]
  8. H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
    [CrossRef]
  9. H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
    [CrossRef] [PubMed]
  10. A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
    [CrossRef] [PubMed]
  11. M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
    [CrossRef]
  12. E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics40(4), 283–285 (2010).
    [CrossRef]
  13. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi+, Bi53+, and Bi4,” arXiv:1106.1519v2 [cond-mat.mtrl-sci] (2011).
  14. I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
    [CrossRef]
  15. I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
    [CrossRef] [PubMed]
  16. S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
    [CrossRef] [PubMed]
  17. D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
    [CrossRef]
  18. I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.
  19. A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
    [CrossRef]
  20. S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
    [CrossRef]
  21. A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
    [CrossRef]
  22. A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
    [CrossRef]
  23. X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
    [CrossRef]
  24. X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
    [CrossRef]
  25. R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett.55(22), 2471–2474 (1985).
    [CrossRef] [PubMed]
  26. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
    [CrossRef]
  27. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B50(24), 17953–19979 (1994).
    [CrossRef]
  28. http://qe-forge.org/projects/pslibrary
  29. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996).
    [CrossRef] [PubMed]
  30. http://theory.cm.utexas.edu/vtsttools/bader
  31. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B12(8), 3060–3083 (1975).
    [CrossRef]
  32. http://elk.sourceforge.net
  33. J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992).
    [CrossRef]
  34. D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990).
    [CrossRef]
  35. A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,”J. Chem. Phys.124(22), 221101 (2006).
    [CrossRef] [PubMed]
  36. F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009).
    [CrossRef] [PubMed]
  37. D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011).
    [CrossRef]
  38. G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,”J. Chem. Phys.48(1), 217–222 (1968).
    [CrossRef]
  39. C. W. M. Timmermans and G. Blasse, “The luminescence of some oxidic bismuth and lead compounds,”J. Solid State Chem.52(3), 222–232 (1984).
    [CrossRef]
  40. H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
    [CrossRef]
  41. R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
    [CrossRef]
  42. C. E. Moore, “Atomic Energy Levels,” Vol. III. (US Department of Commerce, National Bureau of Standards, 1958).
  43. S. George and J.H. Munsee, “Hyperfine-structure measurements in bismuth using a Fourier-transform spectrometer,” J. Opt. Soc. Am. B2(8), 1258–1263 (1985).
    [CrossRef]
  44. G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
    [CrossRef]
  45. G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
    [CrossRef]
  46. G. Blasse, “Classical phosphors: a Pandora box,”J. Lumin.72–74,129–134 (1997).
    [CrossRef]
  47. A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5(M2+= Ba2+, Sr2+and Ca2+),”J. Lumin.78(4), 239–243 (1998).
    [CrossRef]
  48. L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002).
    [CrossRef]
  49. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011).
    [CrossRef]
  50. V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
    [CrossRef]
  51. A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
    [CrossRef]
  52. K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand Reinhold Company, 1979).
  53. O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
    [CrossRef]
  54. L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983).
    [CrossRef]
  55. V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3) 362–364 (2013).
    [CrossRef] [PubMed]
  56. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express21(8), 9324–9332 (2013).
    [CrossRef] [PubMed]
  57. K. Balasubramanian and D.-W. Liao, “Spectroscopic constants and potential energy curves of Bi20and Bi2−,”J. Chem. Phys.95(5), 3064–3073 (1991).
    [CrossRef]
  58. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
    [CrossRef] [PubMed]
  59. A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
    [CrossRef]
  60. M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
    [CrossRef]
  61. Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).
  62. L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
    [CrossRef]

2013 (7)

E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology31(4), 681–688 (2013).
[CrossRef]

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
[CrossRef]

V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3) 362–364 (2013).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express21(8), 9324–9332 (2013).
[CrossRef] [PubMed]

2012 (6)

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

2011 (8)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011).
[CrossRef]

2010 (3)

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics40(4), 283–285 (2010).
[CrossRef]

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

2009 (4)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009).
[CrossRef] [PubMed]

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
[CrossRef]

2008 (1)

2006 (1)

A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,”J. Chem. Phys.124(22), 221101 (2006).
[CrossRef] [PubMed]

2002 (3)

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
[CrossRef]

L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002).
[CrossRef]

R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
[CrossRef]

2001 (1)

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

1998 (2)

A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5(M2+= Ba2+, Sr2+and Ca2+),”J. Lumin.78(4), 239–243 (1998).
[CrossRef]

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

1997 (1)

G. Blasse, “Classical phosphors: a Pandora box,”J. Lumin.72–74,129–134 (1997).
[CrossRef]

1996 (2)

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

1994 (3)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B50(24), 17953–19979 (1994).
[CrossRef]

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

1992 (2)

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992).
[CrossRef]

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

1991 (1)

K. Balasubramanian and D.-W. Liao, “Spectroscopic constants and potential energy curves of Bi20and Bi2−,”J. Chem. Phys.95(5), 3064–3073 (1991).
[CrossRef]

1990 (1)

D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990).
[CrossRef]

1989 (1)

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

1987 (1)

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

1985 (2)

S. George and J.H. Munsee, “Hyperfine-structure measurements in bismuth using a Fourier-transform spectrometer,” J. Opt. Soc. Am. B2(8), 1258–1263 (1985).
[CrossRef]

R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett.55(22), 2471–2474 (1985).
[CrossRef] [PubMed]

1984 (1)

C. W. M. Timmermans and G. Blasse, “The luminescence of some oxidic bismuth and lead compounds,”J. Solid State Chem.52(3), 222–232 (1984).
[CrossRef]

1983 (1)

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983).
[CrossRef]

1975 (1)

O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B12(8), 3060–3083 (1975).
[CrossRef]

1968 (1)

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,”J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

1967 (1)

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967).
[CrossRef]

Alder, B. I.

D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990).
[CrossRef]

Alekseyev, A. B.

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

Alexandrov, Yu. M.

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Andersen, O. K.

O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B12(8), 3060–3083 (1975).
[CrossRef]

Bai, Z.

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

Balasubramanian, K.

K. Balasubramanian and D.-W. Liao, “Spectroscopic constants and potential energy curves of Bi20and Bi2−,”J. Chem. Phys.95(5), 3064–3073 (1991).
[CrossRef]

Baroni, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Batey, J.

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Bazakutsa, A.

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
[CrossRef]

Becke, A. D.

A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,”J. Chem. Phys.124(22), 221101 (2006).
[CrossRef] [PubMed]

Bevan, D. J. M.

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Bjerrum, N. J.

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967).
[CrossRef]

Blaha, P.

D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011).
[CrossRef]

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009).
[CrossRef] [PubMed]

Blasse, G.

G. Blasse, “Classical phosphors: a Pandora box,”J. Lumin.72–74,129–134 (1997).
[CrossRef]

G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

C. W. M. Timmermans and G. Blasse, “The luminescence of some oxidic bismuth and lead compounds,”J. Solid State Chem.52(3), 222–232 (1984).
[CrossRef]

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,”J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Blöchl, P. E.

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B50(24), 17953–19979 (1994).
[CrossRef]

Bonini, N.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Brage, T.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Brandt, J. C.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Breidohr, R.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

Bril, A.

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,”J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

Buenker, R. J.

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

Bufetov, I. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Bufetova, G. A.

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

Burke, K.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Calandra, M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Car, R.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett.55(22), 2471–2474 (1985).
[CrossRef] [PubMed]

Cavazzoni, C.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Ceperley, D. M.

D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990).
[CrossRef]

Ceresoli, D.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Chiarotti, G. L.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Cococcioni, M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Colson, S. D.

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

Dabo, I.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Dal Corso, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Davis, H. L.

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967).
[CrossRef]

de Gironcoli, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Demes, H.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

Denisov, L. K.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

Desai, S. R.

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

Dianov, E. M.

E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology31(4), 681–688 (2013).
[CrossRef]

V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3) 362–364 (2013).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express21(8), 9324–9332 (2013).
[CrossRef] [PubMed]

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011).
[CrossRef]

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics40(4), 283–285 (2010).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
[CrossRef]

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi+, Bi53+, and Bi4,” arXiv:1106.1519v2 [cond-mat.mtrl-sci] (2011).

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Dianov, E.M.

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

DiMaria, D. J.

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Dinnebier, R. E.

R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
[CrossRef]

Dolk, L.

L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002).
[CrossRef]

Dong, G.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Dori, L.

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Dvoretskii, D. A.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

Ehrenberg, H.

R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
[CrossRef]

Ernzerhof, M.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

Fabris, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Fan, J.

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

Fattakhova, Z. T.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Ferey, G.

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Fink, E. H.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

Firstov, S. V.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

Firstov, S.V.

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Firstova, E. G.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Fischetti, M. V.

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Fleming, J.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Foster, A. S.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
[CrossRef]

Fratesi, G.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Fujii, M.

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Gao, H.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Gebauer, R.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

George, S.

Gerstmann, U.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Giannozzi, P.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Golant, K.

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
[CrossRef]

Gougoussis, C.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Guo, X.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Gur’yanov, A. N.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

Guryanov, A. N.

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Haula, E. V.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Hayashi, Sh.

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

Herzberg, G.

K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand Reinhold Company, 1979).

Hirsch, G.

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

Huber, K. D.

K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand Reinhold Company, 1979).

Ibberson, R. M.

R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
[CrossRef]

Imakita, K.

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

Jansen, M.

R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
[CrossRef]

Johansson, S.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Johnson, E. R.

A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,”J. Chem. Phys.124(22), 221101 (2006).
[CrossRef] [PubMed]

Katsuya, Y.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

Kazin, P. E.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Khopin, V. F.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

S. V. Firstov, V. F. Khopin, I. A. Bufetov, E. G. Firstova, A. N. Guryanov, and E. M. Dianov, “Combined excitation-emission spectroscopy of bismuth active centers in optical fibers,” Opt. Express19(20), 19551–19551 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Kobayashi, K.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

Kokalj, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Koller, D.

D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011).
[CrossRef]

Koltashev, V. V.

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
[CrossRef]

Korchak, V. N.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Kouznetsov, M. S.

Lazzeri, M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Leblanc, M.

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Leckrone, D. S.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Levchenko, A. E.

Li, H.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Li, H. J.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Li, V.

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

Liao, D.-W.

K. Balasubramanian and D.-W. Liao, “Spectroscopic constants and potential energy curves of Bi20and Bi2−,”J. Chem. Phys.95(5), 3064–3073 (1991).
[CrossRef]

Lib, J.-G.

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

Liebermann, H.-P.

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

Lisitsky, I. S.

Litzén, U.

L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002).
[CrossRef]

Liu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Liu, J. F.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Lopez Gejo, F.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
[CrossRef]

Makhov, V. N.

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Martin-Samos, L.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Marzari, N.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Matsushita, Y.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

Mauri, F.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Mazzarello, R.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Melkumov, M. A.

Meuerink, A.

G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Miwa, Y.

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983).
[CrossRef]

Moore, C. E.

C. E. Moore, “Atomic Energy Levels,” Vol. III. (US Department of Commerce, National Bureau of Standards, 1958).

Morimoto, S.

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

Munsee, J.H.

Nieminen, R. M.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
[CrossRef]

Nischev, K. N.

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Nishchev, K. N.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

Nomes, M.

G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Panov, A. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

Paolini, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Parrinello, M.

R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett.55(22), 2471–2474 (1985).
[CrossRef] [PubMed]

Pasquarello, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Paulatto, L.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Peng, M.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Perdew, J. P.

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992).
[CrossRef]

Philippovskiy, D. V.

Plotnichenko, V. G.

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express21(8), 9324–9332 (2013).
[CrossRef] [PubMed]

V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3) 362–364 (2013).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi+, Bi53+, and Bi4,” arXiv:1106.1519v2 [cond-mat.mtrl-sci] (2011).

Proffitt, C. R.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Pynenkov, A. A.

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

Qiu, J.

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Reader, J.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Romanov, A. N.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Rossell, H. J.

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Sakka, Y.

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Sansonetti, C. J.

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Sbraccia, C.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Scandolo, S.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Sclauzero, G.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Seitsonen, A. P.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Semenov, S. L.

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

Semjonov, S. L.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

Setzer, K. D.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

Shestakov, O.

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

Shirahata, N.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Shluger, A. L.

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
[CrossRef]

Shubin, A. V.

Sidorin, K. K.

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Simpson, D. J.

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Smith, G. P.

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967).
[CrossRef]

Smogunov, A.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Sokolov, V. O.

V. G. Plotnichenko, V. O. Sokolov, D. V. Philippovskiy, I. S. Lisitsky, M. S. Kouznetsov, K. S. Zaramenskikh, and E. M. Dianov, “Near-infrared luminescence in TlCl:Bi crystal,” Opt. Lett.38(3) 362–364 (2013).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Centers of near-IR luminescence in bismuth-doped TlCl and CsI crystals,” Opt. Express21(8), 9324–9332 (2013).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett.33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi+, Bi53+, and Bi4,” arXiv:1106.1519v2 [cond-mat.mtrl-sci] (2011).

Srivastava, A. M.

A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5(M2+= Ba2+, Sr2+and Ca2+),”J. Lumin.78(4), 239–243 (1998).
[CrossRef]

Stasiak, J.

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Su, L.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Su, L. B.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Sulimov, V. B.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Sun, H.-T.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

H.-T. Sun, Y. Sakka, M. Fujii, N. Shirahata, and H. Gao, “Ultrabroad near-infrared photoluminescence from ionic liquids containing subvalent bismuth,” Opt. Lett.36(2) 100–102 (2011).
[CrossRef] [PubMed]

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Szeto, L.

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983).
[CrossRef]

Tanaka, M.

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

Taylor, M. R.

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Teteris, J.

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
[CrossRef]

Tierney, E.

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Timmermans, C. W. M.

C. W. M. Timmermans and G. Blasse, “The luminescence of some oxidic bismuth and lead compounds,”J. Solid State Chem.52(3), 222–232 (1984).
[CrossRef]

Tran, F.

D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011).
[CrossRef]

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009).
[CrossRef] [PubMed]

Trukhin, A.

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
[CrossRef]

Trukhin, A. N.

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Trusov, L. A.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Tsvetkov, V.B.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Umari, P.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Usovich, O. V.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Veber, A. A.

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

A. N. Romanov, Z. T. Fattakhova, A. A. Veber, O. V. Usovich, E. V. Haula, V. N. Korchak, V.B. Tsvetkov, L. A. Trusov, P. E. Kazin, and V. B. Sulimov, “On the origin of near-IR luminescence in Bi-doped materials (II). Subvalent monocation Bi+and cluster Bi53+luminescence in AlCl3/ZnCl2/BiCl3chloride glass,” Opt. Express20(7) 7212–7220 (2012).
[CrossRef] [PubMed]

Vel’miskin, V. V.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

I. A. Bufetov, M. A. Melkumov, S. V. Firstov, A. V. Shubin, S. L. Semenov, V. V. Vel’miskin, A. E. Levchenko, E. G. Firstova, and E. M. Dianov, “Optical gain and laser generation in bismuth-doped silica fibers free of other dopants,” Opt. Lett.36(2), 166–168 (2011).
[CrossRef] [PubMed]

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

Vieira, N. D.

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983).
[CrossRef]

Vishnjakov, V. M.

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Wahlgren, G. M.

L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002).
[CrossRef]

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Wang, L.-Sh.

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

Wang, Q.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Wang, Y.

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992).
[CrossRef]

Wentzcovitch, R. M.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

Wondraczek, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Wu, H.

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

Xu, J.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Yakimenko, M. N.

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Yonezawa, T.

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

Yu, P.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Yu, P. S.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Zaramenskikh, K. S.

Zhang, L.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhang, N.

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

Zhao, H.

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Zhao, H. Y.

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Zlenko, A. S.

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

Zuidema, J.

G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

H.-T. Sun, Y. Sakka, Y. Miwa, N. Shirahata, M. Fujii, and H. Gao, “Spectroscopic characterization of bismuth embedded Y zeolites,” Appl. Phys. Lett.97(13), 131908 (2010)
[CrossRef]

Astronomy & Astrophysics (1)

L. Dolk, U. Litzén, and G. M. Wahlgren, “The laboratory analysis of Bi II and its application to the Bi-rich HgMn star HR 7775,” Astronomy & Astrophysics388(2), 692–703 (2002).
[CrossRef]

Astrophys. J. (1)

G. M. Wahlgren, T. Brage, J. C. Brandt, J. Fleming, S. Johansson, D. S. Leckrone, C. R. Proffitt, J. Reader, and C. J. Sansonetti, “The bismuth abundance in the HgMn Stars χ Lupi and HR 7775 and improved atomic data for selected transitions of Bi I, Bi II, and Bi III,” Astrophys. J.551(1), 520–535 (2001).
[CrossRef]

Australian J. Chem. (1)

H. J. Rossell, M. Leblanc, G. Ferey, D. J. M. Bevan, D. J. Simpson, and M. R. Taylor, “On the crystal structure of Bi2Te4O11,” Australian J. Chem.45(9), 1415–1425 (1992).
[CrossRef]

Inorganic Chem. (1)

H. L. Davis, N. J. Bjerrum, and G. P. Smith, “Ligand field theory of p2,4configurations and its application to the spectrum of Bi+in molten salt media,” Inorganic Chem.6(6), 1172–1178 (1967).
[CrossRef]

J. Am. Chem. Soc. (1)

H.-T. Sun, Y. Matsushita, Y. Sakka, N. Shirahata, M. Tanaka, Y. Katsuya, H. Gao, and K. Kobayashi, “Synchrotron X-ray, photoluminescence, and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y,” J. Am. Chem. Soc.134(6), 2918–2921 (2012).
[CrossRef] [PubMed]

J. Applied Phys. (1)

S. Morimoto, M. Fujii, H.-T. Sun, Y. Miwa, K. Imakita, J. Qiu, and Sh. Hayashi, “Broadband near-infrared emission from bismuth-doped multilayer films,”J. Applied Phys.112(7), 073511 (2012).
[CrossRef]

J. Chem. Phys. (4)

A. D. Becke and E. R. Johnson, “A simple effective potential for exchange,”J. Chem. Phys.124(22), 221101 (2006).
[CrossRef] [PubMed]

G. Blasse and A. Bril, “Investigations on Bi3+-activated phosphors,”J. Chem. Phys.48(1), 217–222 (1968).
[CrossRef]

A. B. Alekseyev, H.-P. Liebermann, R. J. Buenker, G. Hirsch, and V. Li, “Ab initio relativistic configuration interaction calculations of the spectrum of bismuth oxide: Potential curves and transition probabilities,”J. Chem. Phys.100(12), 8956–8968 (1994).
[CrossRef]

K. Balasubramanian and D.-W. Liao, “Spectroscopic constants and potential energy curves of Bi20and Bi2−,”J. Chem. Phys.95(5), 3064–3073 (1991).
[CrossRef]

J. Lightwave Technology (1)

E. M. Dianov, “Amplification in extended transmission bands using bismuth-doped optical fibers,” J. Lightwave Technology31(4), 681–688 (2013).
[CrossRef]

J. Lumin. (3)

A. N. Romanov, A. A. Veber, Z. T. Fattakhova, O. V. Usovich, E. V. Haula, L. A. Trusov, P. E. Kazin, V. N. Korchak, V.B. Tsvetkov, and V. B. Sulimov, “Subvalent bismuth monocation Bi+photoluminescence in ternary halide crystals KAlCl4and KMgCl3,” J. Lumin.134, 180–183 (2013).
[CrossRef]

G. Blasse, “Classical phosphors: a Pandora box,”J. Lumin.72–74,129–134 (1997).
[CrossRef]

A. M. Srivastava, “Luminescence of divalent bismuth in M2+BPO5(M2+= Ba2+, Sr2+and Ca2+),”J. Lumin.78(4), 239–243 (1998).
[CrossRef]

J. Mater. Chem. (2)

H.-T. Sun, Y. Sakka, N. Shirahata, H. Gao, and T. Yonezawa, “Experimental and theoretical studies of photoluminescence from Bi82+and Bi53+stabilized by [AlCl4]−in molecular crystals,”J. Mater. Chem.22(25) 12837–12841 (2012).
[CrossRef]

H.-T. Sun, Y. Sakka, H. Gao, Y. Miwa, M. Fujii, N. Shirahata, Z. Bai, and J.-G. Lib, “Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3crystal,” J. Mater. Chem.21(12), 4060–4063 (2011).
[CrossRef]

J. Mol. Spectroscopy (1)

O. Shestakov, R. Breidohr, H. Demes, K. D. Setzer, and E. H. Fink, “Electronic states and spectra of BiO,”J. Mol. Spectroscopy190(1), 28–77 (1998).
[CrossRef]

J. Non-Crystalline Solids (3)

M. Peng, G. Dong, L. Wondraczek, L. Zhang, N. Zhang, and J. Qiu, “Discussion on the origin of NIR emission from Bi-doped materials,” J. Non-Crystalline Solids357(11-13), 2241–2245 (2011).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Impact of fluorine admixture, hydrogen loading, and exposure to ArF excimer laser on photoluminescence of bismuth defects in amorphous silica,” J. Non-Crystalline Solids362, 180–184 (2013).
[CrossRef]

A. Trukhin, J. Teteris, A. Bazakutsa, and K. Golant, “Intra-center and recombination luminescence of bismuth defects in fused and unfused amorphous silica fabricated by SPCVD,” J. Non-Crystalline Solids363, 187–192 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

L.-Sh. Wang, H. Wu, S. R. Desai, J. Fan, and S. D. Colson, “A photoelectron spectroscopic study of small silicon oxide clusters: SiO2, Si2O3, and Si2O4,”J. Phys. Chem.100(21), 8697–8700 (1996).
[CrossRef]

J. Phys. Chem. Solids (1)

G. Blasse, A. Meuerink, M. Nomes, and J. Zuidema, “Unusual bismuth luminescence in strontium tetraborate (SrB407:Bi),”J. Phys. Chem. Solids55(2), 171–174 (1994).
[CrossRef]

J. Phys. D: Applied Physics (1)

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,”J. Phys. D: Applied Physics42(9), 095410 (2009).
[CrossRef]

J. Phys.: Condens. Matter (1)

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter21(39), 395502 (2009).
[CrossRef]

J. Solid State Chem. (2)

C. W. M. Timmermans and G. Blasse, “The luminescence of some oxidic bismuth and lead compounds,”J. Solid State Chem.52(3), 222–232 (1984).
[CrossRef]

R. E. Dinnebier, R. M. Ibberson, H. Ehrenberg, and M. Jansen, “The crystal structures of the binary mixed valence compound Bi3(III)Bi(V)O7and isotypic Bi3SbO7as determined by high resolution X-ray and neutron powder diffraction,”J. Solid State Chem.163(1), 332–339 (2002).
[CrossRef]

Laser Phys. (1)

X. Guo, H. J. Li, L. B. Su, P. S. Yu, H. Y. Zhao, J. F. Liu, and J. Xu, “Near infrared broadband luminescence in Bi2O3–GeO2binary glass system,” Laser Phys.21(5), 901–905 (2011).
[CrossRef]

Laser Phys. Lett. (1)

I. A. Bufetov and E. M. Dianov, “Bi-doped fiber lasers,” Laser Phys. Lett.6(7), 487–504 (2009).
[CrossRef]

Nucl. Instr. Meth. Phys. Research A (1)

Yu. M. Alexandrov, V. M. Vishnjakov, V. N. Makhov, K. K. Sidorin, A. N. Trukhin, and M. N. Yakimenko, “Electronic properties of crystalline quartz excited by photons in the 5–25 eV range,” Nucl. Instr. Meth. Phys. Research A282(2-3), 580–582 (1989).

Opt. Express (3)

Opt. Lett. (4)

Opt. Materials (1)

X. Guo, H. Li, L. Su, P. Yu, H. Zhao, Q. Wang, J. Liu, and J. Xu, “Study on multiple near-infrared luminescent centers and effects of aluminum ions in Bi2O3–GeO2glass system,” Opt. Materials34(4) 675–678 (2012).
[CrossRef]

Phys. Rev. B (7)

P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B50(24), 17953–19979 (1994).
[CrossRef]

O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B12(8), 3060–3083 (1975).
[CrossRef]

J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-gas correlation energy,” Phys. Rev. B45(23), 13244–13249 (1992).
[CrossRef]

L. F. Mollenauer, N. D. Vieira, and L. Szeto, “Optical properties of the Tl0(1) center in KCl,” Phys. Rev. B27(9), 5332–5346 (1983).
[CrossRef]

D. Koller, F. Tran, and P. Blaha, “Merits and limits of the modified Becke-Johnson exchange potential,” Phys. Rev. B83(19), 195134 (2011).
[CrossRef]

A. S. Foster, F. Lopez Gejo, A. L. Shluger, and R. M. Nieminen, “Vacancy and interstitial defects in hafnia,” Phys. Rev. B65(17), 174117 (2002).
[CrossRef]

M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, “Ballistic electron transport in thin silicon dioxide films,” Phys. Rev. B35(9), 4404–4415 (1987).
[CrossRef]

Phys. Rev. Lett. (4)

D. M. Ceperley and B. I. Alder, “Ground state of the electron gas by a stochastic method,” Phys. Rev. Lett.45(7), 566–569 (1990).
[CrossRef]

F. Tran and P. Blaha, “Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential,” Phys. Rev. Lett.102(22), 226401 (2009).
[CrossRef] [PubMed]

J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett.77(18), 3865–3868 (1996).
[CrossRef] [PubMed]

R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett.55(22), 2471–2474 (1985).
[CrossRef] [PubMed]

Quant. Electronics (4)

A. A. Pynenkov, S. V. Firstov, A. A. Panov, E. G. Firstova, K. N. Nishchev, I. A. Bufetov, and E. M. Dianov, “IR luminescence in bismuth-doped germanate glasses and fibres,” Quant. Electronics43(2), 174–176 (2013).
[CrossRef]

D. A. Dvoretskii, I. A. Bufetov, V. V. Vel’miskin, A. S. Zlenko, V. F. Khopin, S. L. Semjonov, A. N. Gur’yanov, L. K. Denisov, and E. M. Dianov, “Optical properties of bismuth-doped silica fibres in the temperature range 300 – 1500 K,” Quant. Electronics42(9), 762–769 (2012).
[CrossRef]

E. M. Dianov, “On the nature of near-IR emitting Bi centres in glass,” Quant. Electronics40(4), 283–285 (2010).
[CrossRef]

I. A. Bufetov, S. L. Semenov, V. V. Vel’miskin, S. V. Firstov, G. A. Bufetova, and E.M. Dianov, “Optical properties of active bismuth centres in silica fibres containing no other dopants,” Quant. Electronics40(7), 639–641 (2010).
[CrossRef]

Quantum Electron. (1)

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Interstitial BiO molecule as a broadband IR luminescence centre in bismuth-doped silica glass,” Quantum Electron.41(12), 1080–1082 (2011).
[CrossRef]

Other (7)

K. D. Huber and G. Herzberg, “Constants of Diatomic Molecules” (Van Nostrand Reinhold Company, 1979).

C. E. Moore, “Atomic Energy Levels,” Vol. III. (US Department of Commerce, National Bureau of Standards, 1958).

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Possible centers of broadband near-IR luminescence in bismuth-doped solids: Bi+, Bi53+, and Bi4,” arXiv:1106.1519v2 [cond-mat.mtrl-sci] (2011).

I. A. Bufetov, E. G. Firstova, V. F. Khopin, V. V. Vel’miskin, S.V. Firstov, K. N. Nischev, A. N. Guryanov, and E. M. Dianov, “UV energy levels of bismuth luminescent centers in Bi-doped v-SiO2and v-GeO2optical fibers,” 5-th Europhoton Conference, 26–31 August 2012, Stockholm, Sweden, paper ThP.25.

http://theory.cm.utexas.edu/vtsttools/bader

http://qe-forge.org/projects/pslibrary

http://elk.sourceforge.net

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Calculated electron density map of Bi2+ center in SiO2. The map plane goes through the Bi atom and two bridging O atoms.

Fig. 2
Fig. 2

Calculated levels and transitions schemes of bismuth-related centers: (a) Bi2+ center in SiO2, (b) interstitial Bi+ center in SiO2, (c) interstitial Bi+ center in GeO2, (d) Bi··· ≡Si–Si≡ center in SiO2, (e) Bi ··· ≡ Ge–Ge≡ center in GeO2. Level energies are given in 103 cm−1, transition wavelengths in μm.

Fig. 3
Fig. 3

Calculated electron density maps of the centers formed by Bi interstitial species: (a) Bi0 atom in SiO2, (b) Bi0 atom in GeO2, (c) Bi+ ion in SiO2, (d) Bi+ ion in GeO2. The map plane goes through Bi atom and two nearest O atoms in each case.

Fig. 4
Fig. 4

Calculated electron density maps of the centers formed by Bi interstitial atom and oxygen vacancy: (a) Bi0 and ≡Si–Si≡ vacancy in SiO2, (b) Bi0 and ≡Ge–Ge≡ vacancy in GeO2. The map plane goes through the Bi atom and two Si or Ge atoms forming the vacancy in each case.

Fig. 5
Fig. 5

Comparison of the calculated levels and transitions schemes of centers formed by bismuth interstitial atom and oxygen vacancy with the empirical schemes of bismuth-related centers in SiO2 and GeO2 suggested in Refs. [1618]: (a) Bi0 and ≡Si–Si≡ vacancy in SiO2 vs. Si-BAC center; (b) Bi0 and ≡Ge–Ge≡ vacancy in GeO2 vs. Ge-BAC center. Level energies are given in 103 cm−1, transition wavelengths in μm.

Tables (1)

Tables Icon

Table 1 Estimated relative lifetimes of luminescence in bismuth-related centers

Metrics