Abstract

Telluride glasses possess the widest infrared window of all amorphous materials and are key to a number of long-wavelength applications such as bio-sensing. However they are not intrinsically good glass formers and require significant materials engineering for device fabrication. Strategies for stable glass engineering are presented and the fabrication of far infrared optical fibers is described. A new type of optical sensor based on electrophoretic capture of protein is also presented. This sensor is based on a conducting telluride glass which can act as both a capture electrode and an infrared optical element for collecting vibrational signatures of target molecules such as proteins.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
    [CrossRef] [PubMed]
  2. S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
    [CrossRef] [PubMed]
  3. Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett.35(20), 3360–3362 (2010).
    [CrossRef] [PubMed]
  4. C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
    [CrossRef] [PubMed]
  5. Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express18(25), 26754–26759 (2010).
    [CrossRef] [PubMed]
  6. M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6(11), 824–832 (2007).
    [CrossRef] [PubMed]
  7. J. Kalb, F. Spaepen, and M. Wuttig, “Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys,” Appl. Phys. Lett.84(25), 5240–5242 (2004).
    [CrossRef]
  8. B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
    [CrossRef] [PubMed]
  9. X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
    [CrossRef] [PubMed]
  10. J. Lucas, “Infrared Glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
    [CrossRef]
  11. Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
    [CrossRef]
  12. M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
    [CrossRef]
  13. V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
    [CrossRef]
  14. J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
    [CrossRef]
  15. R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of selenium and tellurium,” Phys. Rev. B13(4), 1383–1395 (1976).
    [CrossRef]
  16. A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
    [CrossRef]
  17. C. Vigreux, E. Barthelemy, L. Bastard, J. E. Broquin, S. Menard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
    [CrossRef]
  18. P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
    [CrossRef] [PubMed]
  19. P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
    [CrossRef] [PubMed]
  20. A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
    [CrossRef]
  21. Z. Yang and P. Lucas, “Tellurium-based far-infrared transmitting glasses,” J. Am. Ceram. Soc.92(12), 2920–2923 (2009).
    [CrossRef]
  22. P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.
  23. S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
    [CrossRef] [PubMed]
  24. I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).
  25. P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins,” J. Chromatogr. A127(1), 1–28 (1976).
    [CrossRef] [PubMed]
  26. H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun.36(1), 227–234 (1982).
    [PubMed]
  27. P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc.59(1), 1–9 (2005).
    [CrossRef] [PubMed]
  28. P. Lucas and B. Bureau, “Advanced infrared glasses for biochemical sensing,” in Biointerface Characterization By Advanced IR Spectroscopy, (Elsevier 2011), 217–243.

2013 (1)

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

2012 (1)

S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
[CrossRef] [PubMed]

2011 (4)

C. Vigreux, E. Barthelemy, L. Bastard, J. E. Broquin, S. Menard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

2010 (4)

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
[CrossRef] [PubMed]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett.35(20), 3360–3362 (2010).
[CrossRef] [PubMed]

Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express18(25), 26754–26759 (2010).
[CrossRef] [PubMed]

2009 (5)

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

Z. Yang and P. Lucas, “Tellurium-based far-infrared transmitting glasses,” J. Am. Ceram. Soc.92(12), 2920–2923 (2009).
[CrossRef]

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

2008 (2)

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

2007 (2)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6(11), 824–832 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

J. Kalb, F. Spaepen, and M. Wuttig, “Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys,” Appl. Phys. Lett.84(25), 5240–5242 (2004).
[CrossRef]

1999 (1)

J. Lucas, “Infrared Glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
[CrossRef]

1997 (1)

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).

1982 (1)

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun.36(1), 227–234 (1982).
[PubMed]

1976 (2)

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins,” J. Chromatogr. A127(1), 1–28 (1976).
[CrossRef] [PubMed]

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of selenium and tellurium,” Phys. Rev. B13(4), 1383–1395 (1976).
[CrossRef]

Adam, J. L.

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Aitken, B. G.

S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
[CrossRef] [PubMed]

Albertsson, P. A.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun.36(1), 227–234 (1982).
[PubMed]

Anne, M.-L.

Barillot, M.

Barthelemy, E.

C. Vigreux, E. Barthelemy, L. Bastard, J. E. Broquin, S. Menard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

Barthélémy, E.

Bastard, L.

Bednarcik, J.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Benmore, C. J.

S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
[CrossRef] [PubMed]

Beuneu, B.

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Boesewetter, D. E.

Boussard-Pledel, C.

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Boussard-Plédel, C.

Brilland, L.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Broquin, J. E.

Broquin, J.-E.

Bureau, B.

Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express18(25), 26754–26759 (2010).
[CrossRef] [PubMed]

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc.59(1), 1–9 (2005).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Caravaggio, T.

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins,” J. Chromatogr. A127(1), 1–28 (1976).
[CrossRef] [PubMed]

Charpentier, F.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Cho, J. Y.

S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
[CrossRef] [PubMed]

Churbanov, M.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Churbanov, M. F.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

Collier, J.

Coulombier, Q.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Desevedavy, F.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Dianov, E. M.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

Edwards, T. G.

S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
[CrossRef] [PubMed]

Escalier, R.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

Fah, M. K.

Frayret, J.

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

Geng, J.

Grabowski, B.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

Gulbiten, O.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

Helliwell, K.

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of selenium and tellurium,” Phys. Rev. B13(4), 1383–1395 (1976).
[CrossRef]

Hickel, T.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

Houizot, P.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

Inagawa, I.

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).

Jiang, S.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett.35(20), 3360–3362 (2010).
[CrossRef] [PubMed]

Joo, Y. C.

S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
[CrossRef] [PubMed]

Jóvári, P.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Juncker, C.

Kaban, I.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Kalb, J.

J. Kalb, F. Spaepen, and M. Wuttig, “Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys,” Appl. Phys. Lett.84(25), 5240–5242 (2004).
[CrossRef]

Ketkova, L. A.

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

Krbal, M.

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

Kronvall, G.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun.36(1), 227–234 (1982).
[PubMed]

Le Coq, D.

Lencer, D.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

Lucas, J.

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

J. Lucas, “Infrared Glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
[CrossRef]

Lucas, P.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett.35(20), 3360–3362 (2010).
[CrossRef] [PubMed]

Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express18(25), 26754–26759 (2010).
[CrossRef] [PubMed]

Z. Yang and P. Lucas, “Tellurium-based far-infrared transmitting glasses,” J. Am. Ceram. Soc.92(12), 2920–2923 (2009).
[CrossRef]

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

P. Lucas, D. Le Coq, C. Juncker, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, B. Bureau, and M. R. Riley, “Evaluation of toxic agent effects on lung cells by fiber evanescent wave spectroscopy,” Appl. Spectrosc.59(1), 1–9 (2005).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Lucovsky, G.

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of selenium and tellurium,” Phys. Rev. B13(4), 1383–1395 (1976).
[CrossRef]

Luo, T.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett.35(20), 3360–3362 (2010).
[CrossRef] [PubMed]

Martin, R. M.

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of selenium and tellurium,” Phys. Rev. B13(4), 1383–1395 (1976).
[CrossRef]

Menard, S.

Ménard, S.

Miörner, H.

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun.36(1), 227–234 (1982).
[PubMed]

Morimoto, S.

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).

Neugebauer, J.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

Pain, T.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Parent, G.

Piarristeguy, A.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

Piarristeguy, A. A.

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

Plotnichenko, V. G.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

Pradel, A.

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

C. Vigreux, E. Barthelemy, L. Bastard, J. E. Broquin, S. Menard, M. Barillot, G. Parent, and A. Pradel, “Fabrication and testing of all-telluride rib waveguides for nulling interferometry,” Opt. Mater. Express1(3), 357–364 (2011).
[CrossRef]

C. Vigreux, E. Barthélémy, L. Bastard, J.-E. Broquin, M. Barillot, S. Ménard, G. Parent, and A. Pradel, “Realization of single-mode telluride rib waveguides for mid-IR applications between 10 and 20 μm,” Opt. Lett.36(15), 2922–2924 (2011).
[CrossRef] [PubMed]

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

Reynolds, K. A.

Righetti, P. G.

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins,” J. Chromatogr. A127(1), 1–28 (1976).
[CrossRef] [PubMed]

Riley, M. R.

Salinga, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

Sen, S.

S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
[CrossRef] [PubMed]

S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
[CrossRef] [PubMed]

Sexton, J. D.

Shirotani, I.

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).

Shiryaev, V.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Shiryaev, V. S.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

Sibirkin, A. A.

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

Snopatin, G.

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Snopatin, G. E.

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

Soyer Uzun, S.

S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
[CrossRef] [PubMed]

Spaepen, F.

J. Kalb, F. Spaepen, and M. Wuttig, “Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys,” Appl. Phys. Lett.84(25), 5240–5242 (2004).
[CrossRef]

Troles, J.

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Vigreux, C.

Wilhelm, A.

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

Wilhelm, A. A.

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Wuttig, M.

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6(11), 824–832 (2007).
[CrossRef] [PubMed]

J. Kalb, F. Spaepen, and M. Wuttig, “Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys,” Appl. Phys. Lett.84(25), 5240–5242 (2004).
[CrossRef]

Yamada, N.

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6(11), 824–832 (2007).
[CrossRef] [PubMed]

Yamashita, T.

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).

Yang, Z.

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett.35(20), 3360–3362 (2010).
[CrossRef] [PubMed]

Z. Yang, M. K. Fah, K. A. Reynolds, J. D. Sexton, M. R. Riley, M.-L. Anne, B. Bureau, and P. Lucas, “Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors,” Opt. Express18(25), 26754–26759 (2010).
[CrossRef] [PubMed]

Z. Yang and P. Lucas, “Tellurium-based far-infrared transmitting glasses,” J. Am. Ceram. Soc.92(12), 2920–2923 (2009).
[CrossRef]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

Zajac, D. A.

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

Zhang, X.

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

Zhang, X. H.

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

Adv. Mater. (1)

A. A. Wilhelm, C. Boussard-Pledel, Q. Coulombier, J. Lucas, B. Bureau, and P. Lucas, “Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics,” Adv. Mater.19(22), 3796–3800 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

J. Kalb, F. Spaepen, and M. Wuttig, “Atomic force microscopy measurements of crystal nucleation and growth rates in thin films of amorphous Te alloys,” Appl. Phys. Lett.84(25), 5240–5242 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Chemistry (1)

X. H. Zhang, B. Bureau, P. Lucas, C. Boussard-Pledel, and J. Lucas, “Glasses for seeing beyond visible,” Chemistry14(2), 432–442 (2008).
[CrossRef] [PubMed]

Curr. Opin. Solid State Mater. Sci. (1)

J. Lucas, “Infrared Glasses,” Curr. Opin. Solid State Mater. Sci.4(2), 181–187 (1999).
[CrossRef]

Infect. Immun. (1)

H. Miörner, P. A. Albertsson, and G. Kronvall, “Isoelectric points and surface hydrophobicity of Gram-positive cocci as determined by cross-partition and hydrophobic affinity partition in aqueous two-phase systems,” Infect. Immun.36(1), 227–234 (1982).
[PubMed]

J. Am. Ceram. Soc. (2)

Z. Yang and P. Lucas, “Tellurium-based far-infrared transmitting glasses,” J. Am. Ceram. Soc.92(12), 2920–2923 (2009).
[CrossRef]

Z. Yang, O. Gulbiten, P. Lucas, T. Luo, and S. Jiang, “Long-wave infrared-transmitting optical fibers,” J. Am. Ceram. Soc.94(6), 1761–1765 (2011).
[CrossRef]

J. Chromatogr. A (1)

P. G. Righetti and T. Caravaggio, “Isoelectric points and molecular weights of proteins,” J. Chromatogr. A127(1), 1–28 (1976).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (2)

M. F. Churbanov, G. E. Snopatin, V. S. Shiryaev, V. G. Plotnichenko, and E. M. Dianov, “Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics,” J. Non-Cryst. Solids357(11-13), 2352–2357 (2011).
[CrossRef]

A. A. Piarristeguy, E. Barthelemy, M. Krbal, J. Frayret, C. Vigreux, and A. Pradel, “Glass formation in the GexTe100-x binary system: Synthesis by twin roller quenching and co-thermal evaporation techniques,” J. Non-Cryst. Solids355(37-42), 2088–2091 (2009).
[CrossRef]

J. Phys. Condens. Matter (4)

P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, and A. Pradel, “Short range order and stability of amorphous Ge(x)Te(100-x) alloys (12 ≤ x ≤ 44.6),” J. Phys. Condens. Matter25(19), 195401 (2013).
[CrossRef] [PubMed]

P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, and D. A. Zajac, “Structure of Te-rich Te-Ge-X (X = I, Se, Ga) glasses,” J. Phys. Condens. Matter22(40), 404207 (2010).
[CrossRef] [PubMed]

P. Jóvári, P. Lucas, Z. Yang, B. Bureau, I. Kaban, B. Beuneu, and J. Bednarcik, “The structure of Ge-As-Te glasses,” J. Phys. Condens. Matter. in press.

S. Sen, S. Soyer Uzun, C. J. Benmore, and B. G. Aitken, “Structure, topology and chemical order in Ge-As-Te glasses: a high-energy x-ray diffraction study,” J. Phys. Condens. Matter22(40), 405401 (2010).
[CrossRef] [PubMed]

Molecules (1)

B. Bureau, C. Boussard-Pledel, P. Lucas, X. Zhang, and J. Lucas, “Forming glasses from Se and Te,” Molecules14(11), 4337–4350 (2009).
[CrossRef] [PubMed]

Nat. Mater. (2)

D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, and M. Wuttig, “A map for phase-change materials,” Nat. Mater.7(12), 972–977 (2008).
[CrossRef] [PubMed]

M. Wuttig and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater.6(11), 824–832 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (2)

V. S. Shiryaev, J. Troles, P. Houizot, L. A. Ketkova, M. F. Churbanov, J. L. Adam, and A. A. Sibirkin, “Preparation of optical fibers based on Ge-Sb-S glass system,” Opt. Mater.32(2), 362–367 (2009).
[CrossRef]

J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, and J. L. Adam, “GeSe4 glass fibres with low optical losses in the mid-IR,” Opt. Mater.32(1), 212–215 (2009).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. B (1)

R. M. Martin, G. Lucovsky, and K. Helliwell, “Intermolecular bonding and lattice dynamics of selenium and tellurium,” Phys. Rev. B13(4), 1383–1395 (1976).
[CrossRef]

Phys. Rev. Lett. (1)

S. Sen, T. G. Edwards, J. Y. Cho, and Y. C. Joo, “Te-centric view of the phase change mechanism in Ge-Sb-Te alloys,” Phys. Rev. Lett.108(19), 195506 (2012).
[CrossRef] [PubMed]

Phys., Part 1 (1)

I. Inagawa, S. Morimoto, T. Yamashita, and I. Shirotani, ““Temperature dependence of transmission loss of chalcogenide glass fibers,” Jpn. J. Appl,” Phys., Part 136(4A), 2229–2235 (1997).

Other (1)

P. Lucas and B. Bureau, “Advanced infrared glasses for biochemical sensing,” in Biointerface Characterization By Advanced IR Spectroscopy, (Elsevier 2011), 217–243.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure of a Ge15Te85 glass (Ge: black atoms; Te: yellow atoms).

Fig. 2
Fig. 2

Structure of a Ge20Te73I7 glass (Ge: black atoms: Te: yellow atoms; I: purple atoms).

Fig. 3
Fig. 3

Structure of a Te-rich Ge10As15Te75 glass (Ge: black atoms: Te: yellow atoms; As: grey atoms).

Fig. 4
Fig. 4

Optical attenuation of a Ge10As15Te70Se5 single index fiber measured by the cut-back method. The inset shows a DSC scan of the glass. The conductivity was measured by four-pointy probe.

Fig. 5
Fig. 5

Optical attenuation of a Ge15As40Te40Se5 single index fiber measured by the cut-back method. The inset shows a DSC scan of the glass. The conductivity was measured by four-pointy probe.

Fig. 6
Fig. 6

Optical attenuation of a double index single mode Ge20As20Te44Se16 fiber. The insets shows a schematic of the double draw method as well as an image of the fiber and its output.

Fig. 7
Fig. 7

(a) Electrical conductivity of a Ge10As15Te75 glass doped with increasing amount of Cu. (b) Transmission of a Ge10As15Te75 glass doped with increasing amount of Cu measured on a window a thickness ~1.5 mm.

Fig. 8
Fig. 8

(a) Schematics of an opto-electrophoretic sensors for inducing migration of charged bio-molecules on an optical sensor. (b) Picture of an actual Ge10As15Te75 ATR plate.

Fig. 9
Fig. 9

(a) ATR spectra of an E Coli bacterium solution (2.85x109cfu/ml) electro-deposited on a Ge15As10Te65Se10 ATR plate with an applied voltage of 12.0V. The curves from the bottom to the top correspond to 0, 2, 4, 8, 14, and 20min respectively, (b) Absorption spectrum of dry E Coli bacterium and ATR spectrum of E Coli bacterium (2.85x109cfu/ml) electro-deposited on a Ge15As10Te65Se10 ATR plate for 35min.

Fig. 10
Fig. 10

(a) ATR spectra of electrodeposited BSA and Lysozyme protein from a 15mg/ml solution after 50min electrphoretic migration under a 2.5 V potential, (b) PCA map performed in the spectral region 1200-1000cm−1 on 10 individual batch of each protein.

Metrics